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PREFACE 

The Air Force Combat Climatology Center's statistician, Mr Charles Coffin, regularly writes background papers 
covering a wide range of topics in statistics. Many of these papers also include samples of statistical analysis 
procedures (SAS) often used at AFCCC. The goal of these papers is to keep AFCCC analysts up to date on 
current statistical techniques. 

Mr Kevin Havener (as Capt Havener of AFCCC/SYT) and Mr Anthony Warren (as Capt Warren of AFCCC/ 
SYT) made comments on drafts of different chapters of this technical note. Mr Warren was helpful with Word 
Perfect. Mr Havener was helpful in converting text and equations from Word Perfect to Miscrosoft Word. The 
AFCCC publications services team (Mr Gene Newman, Ms Kristine Byrnside, and SSgt Le La Hartman) edited 
the technical note. 
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CONSOLIDATED STATISTICAL BACKGROUND PAPERS 

m 
Chapter 1 

PERIOD OF RECORD 

1.1 Introduction. Do you have enough data to 
accurately summarize the true climate of an area? 
According to the World Meteorological 
Organization (WMO) publication, WMO- 
NO.208.TP.108 (1967), determining the period of 
record (POR) necessary to calculate mean 
climatological values has perplexed climatologists 
for a long time. Air Force Combat Climatology 
Center receives frequent taskings to provide 
worldwide climatological summaries and statistics 
for both planning and contingency support. Often 
data requests are for locations with erratic reporting 
practices. There is no simple answer to this question, 
but this chapter attempts to provide analysts 
guidance on how to decide if there is sufficient data 
to meet their needs. 

1.2 Discussion. 

a. The WMO states a longer POR is needed for 
elements at sites with considerable climatic 
fluctuations than for those with little climatic 
fluctuations. Elements such as temperature, 
humidity, and cloud amount, which show less 
variability, do not require as many years of 
observations as precipitation, which is much more 
variable. Mountainous stations require more years 
of data than stations in the plains. 

b. The WMO generally accepts that a POR of 10 
years provides sufficient data for most common 
climatological elements. Landsberg and Jacobs 
(1951), state that the proper period of record varies 
from element to element, from season to season, 
and from region to region. Table 1-1 is extracted 
from that publication. 

c. Brooks and Carruthers (1953) point out that the 
whole of climatology is based on the study of 
samples. A sample is a group of one or more 
observations. According to Brooks and Carruthers, 
a sample of 30 or more independent observations 
may be regarded as a large sample. However, 
individual observations of most weather variables 
are serially correlated. To get a random sample of 
independent observation values, you can spread 
observations several days apart. You can also reduce 
serial correlation by using a sample consisting of 
monthly means instead of individual observations. 
If you have a random sample of 100 or more means, 
you can get a good grasp of the underlying 
distribution of variable means. 

If there are not enough observations to calculate a 
certain mean, then it is best to combine groupings, 
e.g., calculate seasonal rather than monthly means. 
It is best to study a POR at first in general detail, 

Table 1 -1. Recommended period of record (in years) for various regions (ET=Extra Tropical, T=Tropical). 

Climatic element 
Islands Shore Plains Mountains 

ET T ET T ET T ET T 

Temperature 10 5 15 8 15 10 25 15 

Humidity 3 1 6 2 5 3 10 6 

Cloud 4 2 4 3 8 4 12 6 

Visibility 5 3 5 3 5 4 8 6 

Precipitation 25 30 30 40 40 40 50 50 
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then combine data into different groups that prove 
to be most convenient. There is no real loss of 
accuracy in combining when there are so few 
observations in a particular group. The number of 
bins (or classes in SAS), into which a series of 
observations should be divided, depends on the 
situation. Brooks and Carruthers give the following 
rough guide: the number of bins should be no more 
than five times the logarithm of the total number of 
observations. If you have 100 (or 102) observations, 
you should not have more than (2X5) = 10 bins. 

The best way to make a preliminary study of an 
observation series, according to Brooks and 
Carruthers, is to form a frequency distribution. 
Percentiles on all the monthly means gives 
information about the median (50th percentile) of 
all the means and the extreme mean percentiles (1st 
and 99th). The 1st percentile of means indicates 
the lowest extreme mean value and the 99th the 
highest. 

d. Climatologists currently define the term "normal" 
to be a mean of a climatic element over a time period 
of 30 years, comprising at least three consecutive 
10-year periods. Panofsky and Brier (1958) claim 
that a mean based on 15 years of data gives the best 
estimate for next year's mean and is therefore 
preferable to climatic normals based on more than 
15 years. Court (1968) recommends using climatic 
normals over a 15-year period of record, rather than 
a 30-year period of record, with recomputation of 
the normals every 5 years. He states the median 
values based on 15 years is an even better predictor 
than the mean value. Finally, Court points out that 
7 years is a suitable time period for defining the 
climate of a region. 

e. You should consider means with equal samples 
in the construction of climatological normals, 
according to Panofsky and Brier (1958). For 
example, suppose you want to know the grand mean 
January 12Z temperature. You have 20 years of 
mean January 12Z data, however, 15 years of the 
January means were calculated using 31 daily values 
while the means for the remaining 5 years are based 
on 10 or less daily values.  In this case, you really 

only have a 15 year POR, not 20. Statisticians 
usually design a comparison study to ensure the 
number of observations is the same in each data 
sample. Equal sample sizes are preferred since they 
are simpler to analyze as well as more efficient. 
Comparison of means with unequal sample sizes is 
more sensitive to the violation of statistical 
assumptions. You gain more by comparing means 
of equal sizes than by arguing that a statistic has to 
be based on a set number of data points. 

f. If some data is missing, Panofsky and Brier 
suggest that a mean computed from a short record 
can be augmented by the use of information at 
surrounding sites. WMO-NO.208.TP.108 (1967) 
states that missing data can be dealt with in three 
ways: 

(1) Check the available climatological data at 
different stations and use a site with a better relative 
data consistency; 

(2) Interpolate missing data in a recorded period; 

(3) Reconstruct insufficiently long climatological 
series by referring to data of a neighboring 
comparable station for which sufficiently long data 
series is available. 

1.3 Conclusion. Although the WMO recommends 
using a POR of between 10 and 15 years for a valid 
climatological study, some climatologists lean 
toward using between 7 to 15 years. Percentiles on 
monthly mean values show us the breakdown of 
mean values. A cumulative frequency distribution 
on a data sample gives us a more complete picture 
of the data sample. If you have enough data, then it 
might be a good idea to separate the frequency 
distribution into two 10-year periods of record. If 
the two periods of record generate the same 
frequency distribution, then you know a 10-year 
POR is sufficient. In addition, according to 
Panofsky and Brier (1958), you should compare 
means with equal sample sizes. If some data are 
missing, then WMO (WMO-NO.208.TP.108) 
suggests several methods to fill in the data without 
inducing very much uncertainty. 

• 
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Chapter 2 

PERIOD OF RECORD USING CUMULATIVE FREQUENCY DISTRIBUTION 

2.1 Introduction. The focus of this chapter is on a 
strategy that may be used to determine the minimum 
length of time needed to obtain a "satisfactory" 
period of record. This strategy is taken from Air 
Weather Service Technical Report 105-25. SAS 
code is also provided showing how this technique 
can be employed. 

2.2 Discussion. 

a. The purpose of AWS/TR 105—25 is to establish 
the number of years that are needed in order to 
obtain a relatively constant frequency distribution 
for a given meteorological element. A constant 
frequency distribution is attained when the addition 
of years of record to the database does not 
significantly alter the interpretation of climatic 
records. Once the number of years necessary to 
achieve this result is established, the work of 
compiling climatic records can be greatly 
streamlined. 

b. The AWS study describes the use of the 
"cumulative frequency distribution" to establish the 
minimum satisfactory length for a POR. The 
cumulative frequency distribution shows the 

number of observations of a given element for each 
class (such as "year"), up to and including the most 
current class. Table 2-1 shows the cumulative 
frequency for January cloud cover, divided by tenths 
into four intervals. Table 2-2 (see next page) shows 
the cumulative frequencies for October cloud cover 
data, over a longer period. 

As seen in Table 2-1, after 3 years none of the 
cumulative percentage frequencies in any step 
changes by more than five percent with the addition 
of subsequent years. Table 2-2 shows that after 6 
years none of the cumulative percentage frequencies 
in any step changes by more than five percent with 
the addition of subsequent years. This holds true 
even if data collection is extended to 35 years 
(through 1906). These results indicate 6 years' 
worth of data constitute a satisfactory POR for the 
study of October cloud cover frequencies in the 
eastern United States, while 3 years may be 
sufficient for January cloud cover frequencies. 
Note: use of 5 percent as the constancy limit is 
arbitrary. The data must be divided into more than 
one interval for the AWS technique to be applied. 

Table 2-1. Frequencies of occurrence of cloud cover intervals (in tenths) for Washington D.C., January. 

Year 
Frequencies in days (individual years) 

0-2        3-5         6-8       9-10 

Cumulative frequencies (years added) 

0-2         3-5        6-8         9-10 

Cumulative percentage frequencies 

0-2         3-5      6-8    9-10 

1940 13 6 2 10 13 6 2 10 41.9 19.4 6.5 40.3 

1939 10 2 4 15 23 8 6 25 37.1 12.9 9.7 40.3 

1938 13 1 2 15 36 9 8 15 38.7 9.7 8.6 43.0 

1937 6 1 5 19 42 10 13 59 33.9 8.0 10.5 47.6 

1936 13 2 3 13 55 12 16 72 35.5 7.7 10.3 46.4 

1935 17 1 2 11 72 13 18 83 38.7 7.0 9.7 42.9 
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Table 2-2. Cumulative percentage frequencies of cloud cover in- 
tervals (in tenths) for Washington D.C., October. 

0-2 3-5 6-8 9-10 

1940 48.39 9.68 3.22 38.71 

1939 46.77 6.45 4.84 41.90 

1938 56.99 5.38 4.30 33.33 

1937 58.06 4.84 4.84 32.26 

1936 56.77 5.81 7.10 30.32 

1935 56.45 6.45 8.60 28.49 

1934 58.53 6.91 7.83 26.73 

1933 60.89 6.05 7.26 25.80 

1932 59.86 5.38 6.81 27.95 

1931 60.00 4.84 7.10 28.06 

1906 58.34 6.82 9.12 25.71 
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2.3  Example.  The SAS statements shown below can be used to generate the results shown in Table 2-1. 

*READ IN CLOUD DATA FOR YEAR; 
DATA ONE; 
INPUT YEAR CLOUD; 
CARDS; 
19910 
19914 
19917 
1991 10 
1992 3 

1993 7 

RUN; 

*DIVIDE CLOUD DATA INTO INTERVALS; 

DATA TWO CLD02 CLD35 CLD68 CLD910; 
SET ONE; 
IF CLOUD GE 0 AND CLOUD LE 2 THEN 
OUTPUT CLD02; 
IF CLOUD GE 3 AND CLOUD LE 5 THEN 
OUTPUT CLD35; 
IF CLOUD GE 6 AND CLOUD LE 8 THEN 
OUTPUT CLD68; 
IF CLOUD GE 9 AND CLOUD LE 10 THEN 
OUTPUT CLD910; 
RUN; 

CALCULATE FREQUENCIES; 

DATA THREE; 
SET TWO; 
PROC FORMAT; 
VALUE CLD 0-2='0 TO 2' 

3-5='3 TO 5' 
6-8='6 TO 8' 
9-10='9 TO 10'; 

PROC MEANS DATA=CLD02 N NOPRINT; 
FORMAT CLOUD CLD.; 
OUTPUT OUT=FCLD02 N=FCLD02; 
CLASS YEAR; 
PROC MEANS DATA=CLD35 N NOPRINT; 
FORMAT CLOUD CLD.; 

OUTPUT OUT=FCLD35 N=FCLD35; 
CLASS YEAR- 

PROC MEANS DATA=CLD68 N NOPRINT; 
FORMAT CLOUD CLD.; 
OUTPUT OUT=FCLD68 N=FCLD68; 
CLASS YEAR; 
PROC MEANS DATA=CLD910 N NOPRINT; 
FORMAT CLOUD CLD.; 
OUTPUT OUT=FCLD910 N=FCLD910; 
CLASS YEAR; 
RUN; 
DATA FOUR; 
MERGE FCLD02 FCLD35 FCLD68 FCLD910; 
IF YEAR = . THEN DELETE; 
KEEP FCLD02 FCLD35 FCLD68 FCLD910 
YEAR; 
RUN; 

♦CALCULATE CUMULATIVE FREQUENCIES; 

DATA FIVE; 
SET FOUR; 
CFCLD02 + FCLD02; 
CFCLD35 + FCLD35; 
CFCLD68 + FCLD68; 
CFCLD910 + FCLD910; 
RUN; 

* CALCULATE CUMULATIVE PERCENTAGE 
FREQUENCIES; 

DATA SIX; 
SET FIVE; 
CPCLD02 = 
CFCLD68 + 
CPCLD35 = 
CFCLD68 + 
CPCLD68 = 
CFCLD68 + 
CPCLD910 = 
+ CFCLD68 
CPCLD02 = 
CPCLD35 = 
CPCLD68 = 
CPCLD910 = 
RUN; 

CFCLD02/(CFCLD02 + CFCLD35 + 
CFCLD910); 
CFCLD35/(CFCLD02 + CFCLD35 + 
CFCLD910); 
CFCLD68/(CFCLD02 + CFCLD35 + 
CFCLD910); 

= CFCLD910/(CFCLD02 + CFCLD35 
+ CFCLD910); 
CPCLD02*100; 
CPCLD35*100; 
CPCLD68*100; 

= CPCLD910*100; 

PROC PRINT; 
RUN; 
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Chapter 3 

A NOTE ON CLIMATOLOGICAL NORMALS 

3.1 Introduction. This chapter discusses the problem 
of determining the length of the reference period 
necessary for the calculation of climatological mean 
values. Solutions suggested by several authors are 
presented. 

3.2 Discussion. 

a. Use of the term "normal" to describe the mean of 
a long series of observations first appeared in an 1840 
article by Dove. The general public believes the 
"normal" is the most frequent value. Climatologists 
understand that a normal value is the long term mean. 
This is usually not the most frequent value (mode), 
nor the value above which half the cases fall (median). 

b. Normals have been used for two purposes— 
comparison and prediction. The normal serves as a 
reference value by which to compare past and present 
values. For example, at St. Charles, Mo., the normal 
or mean temperature (30-year period, 1951-1980) for 
January is 28.8° F. If we have an actual mean January 
1990 temperature of 19.0 degrees, then we know this 
is 9.8 degrees colder than normal. As predictors, 
climatic normals are often inefficient estimators of 
future conditions. Normals provide only one measure, 
they tell little about climatic change, nonrandom 
fluctuations (trends) or extremes. 

c. In 1956, the World Meteorological Organization 
(WMO) recommended that data from the most recent 
30 year period at a given location be used in the 
calculation of climatological normals. This decision 
has frequently been critically examined. Due to 
climatic fluctuations, the statistics based on a 30-year, 
or even a 50-year period of record may not be so 
absolutely stable throughout the world as to be termed 
"normal" for all locations. Climatic fluctuations vary 
in magnitude in various parts of the world. A POR, 
which is sufficient to provide a representative measure 

of conditions at one location, may be insufficient at 
another. Compounding this problem is the fact that 
as the POR expands, maintaining homogeneity of the 
data becomes more difficult. Climatological statistics 
obtained from too long a period may not be 
representative of contemporary conditions. 

d. Rubinstein (1962), Kuznetsova (1964), and Shvec 
(1964) have addressed this problem, studying the 
elements temperature, humidity, wind, and radiation. 
They found that for temperature data, 10-year monthly 
averages may vary by as much as 10° C between two 
decades. For precipitation data, 30-year periods of 
record are inadequate for the purpose of obtaining 
stable average monthly precipitation values. For 
humidity records, data for 30 to 35 years provide 
sufficiently stable average values. Estimates of the 
mean wind speed, as well as maximum wind speed 
occurring once in 10,20, or 50 years, can be calculated 
with a sufficient degree of accuracy on the basis of 
20 to 25 years' worth of data. Radiation characteristics 
can be calculated on the basis of 25 to 30 years. 

e. The U.S. Army Air Force (1943) also conducted a 
study of the length of record needed to obtain 
satisfactory climatological summaries. An attempt 
was made to find the number of years needed to yield 
a relatively constant frequency distribution (within 5 
percent) for visibility, cloudiness, cloud height, wind 
speed, and precipitation. It was found that data for 
about 7 to 10 years was needed for visibility, cloud, 
and wind, while for precipitation the required POR 
was about 20 years. 

f. Regarding the number of years needed to obtain 
stable frequency distributions, Landsberg and Jacobs 
(1951) have also indicated that the number of years 
varies from element to element, from season to season, 
and from region to region. Their findings are 
summarized in Table 3-1 on the next page. 
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Table 3-1. Approximate number of years needed to obtain stable frequency distribution. (ET = 
Extratropical, T = Tropical). 

Climatic element 
Islands Shore Plains Mountains 

ET T ET T ET T ET T 

Temperature 10 5 15 8 15 10 25 15 

Humidity 3 1 6 2 5 3 10 6 

Cloud 4 2 4 3 8 4 12 6 

Visibility 5 3 5 3 5 4 8 6 

Precipitation 25 30 30 40 40 40 50 50 

3.3 Conclusion. Studies have shown that a shorter 
POR is needed to obtain stable estimates of "normal" 
values for less variable elements such as temperature, 
humidity, and cloud amount. More variable element, 
such as precipitation, require longer periods of record. 

Also, more data is required for stations in mountainous 
areas than for stations in the plains. It's very difficult 
to specify a uniform period that can be used as a 
reference period for all elements, and which can be 
considered representative for the world as a whole. 
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Chapter 4 

SIGNIFICANT FIGURES 

4.1 Introduction. There is widespread belief that 
the accuracy of a measurement or computed result is 
indicated by the number of decimal places required 
to express it. This is erroneous. Instead, the accuracy 
is indicated by the number of significant figures in 
the result. This section presents definitions and 
examples of significant figures, truncation errors, and 
round-off errors. 

4.2 Discussion. 

a. Truncation error is the difference between the "true" 
answer and the answer obtained by a mathematical 
calculation. Often, a mathematical expression is 
solved numerically using finite approximations of 
infinite expressions (e.g., the evaluation of integrals). 
The difference between the true answer and the answer 
obtained from the finite process is known as the 
truncation error. Truncation error is under the 
programmer's control. 

b. Round-off error is the error due to dropping off 
digits (e.g., approximating 1/3 with 0.333 results in a 
round-off errorof 0.0003333333...). Round-off errors 
accumulate with increasing calculations. Round-off 
errors are a characteristic of computer hardware, but 
may be lessened by choosing algorithms that do not 
magnify it unnecessarily. 

c. Round-off error can be better understood by relating 
it to the number of significant figures, which is the 
number of digits in the answer whose values we are 
reasonably sure of. To round off a number to fewer 
significant digits than were specified originally, 
truncate the number as desired and treat the excess 
digits as a decimal fraction (according to Bevington 
and Robinson, 1992). If the fraction is greater than 
one-half, increment the new least significant digit. If 
the fraction is less than one-half, do not increment. 
If the fraction equals one-half, increment the least 
significant digit only if it is odd. 

d. Rules for determining the number of significant 
figures: 

1) All nonzero digits are significant (e.g., 159.75 
contains 5 significant digits). 

2) All zeros between two nonzero digits are 
significant (e.g., 108.005 contains 6 significant 
figures). 

3) Unless otherwise indicated, all zeroes to the 
left of an understood decimal point, but to the 
right of a nonzero digit are not significant. The 
concept of an understood decimal point is best 
illustrated by using scientific notation. For 
example, if we express the number 202,000 by 
2.02 x 105, the measurement has three significant 
digits. 

4) All zeroes to the left of expressed decimal 
points and to the right of a nonzero digit are 
significant. Expressing the previous example as 
202,000 (2.02000 x 105) results in six significant 
digits. 

5) All zeros to the right of a decimal point, but 
to the left of a nonzero digit are not significant 
(e.g., 0.000647 contains three significant figures). 

6) All zeros to the right of a decimal point and 
to the right of a nonsignificant digit are significant 
(e.g., 0.07080 and 20.00 each contains four 
significant figures). 

e. To determine the number of significant figures 
when adding and subtracting, first round all 
measurements to the accuracy of the least accurate 
measurement, then add or subtract. 

1) Addition example. Add 17.35,25.6, and 8.498. 
The value with the least accuracy is 25.6, known 
only in tenths. Rounding the other measurements 
to tenths yields (17.4 + 25.6 + 8.5), which equals 
51.5. 

2) Subtraction example. Subtract 36.8 from 97. 
Round 36.8 to 37. Subtracting 37 from 97 yields 
60. The result is expressed as 60. (not 60) to 
indicate that the zero is significant (i.e., the final 
result has two significant figures). 
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f. When multiplying or dividing a group of numbers, 
use the following rule: If no number in the group 
contains fewer than s significant figures, the others 
should be rounded off, if necessary, to s + 1 significant 
figures. After all calculations are carried out, the result 
is rounded off to s significant figures. Consider the 
following example to illustrate this point. 

4.2.1 Example. Suppose you want to determine the 
volume of a cylinder (V= [4/3]pr70- The radius (r) 
of the cylinder is measured to as 22.264 cm, and the 
height (h) is 7.2 cm. In this example the value of s is 
2, so the radius should be rounded to three significant 
figures (s + 1 = 3). This gives a radius of 22.3. 
Plugging these values into the expression for the 
volume produces a result of 14,990 cm3. Rounding 

this result gives 1.50 x 104 cm3. Since the final result 
can have no more than s significant figures, the volume 
should be reported as 1.5 x 104 cm3. 

4.3 Conclusion. It's pointed out in the literature that 
the rules of significant figures should be applied with 
common sense. The rules are only guidelines and 
there are exceptions. SAS carries its calculations out 
to an excessive number of decimal places. According 
to Sachs (1984), mean values and standard deviations 
should not be stated with more than two decimal 
places more than the original data. This is appropriate 
when the sample size is large. Dimensionless 
constants like skewness, kurtosis, correlation, and 
regression coefficients should be stated with at most 
four significant figures. 

10 
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Chapter 5 

CONTINGENCY MEASURES AND MEASURES OF ASSOCIATION 

5.1. Introduction. Analysts are often interested in 
testing the similarity of two frequency distributions. 
A typical question might be, "Is the cloud-cover 
frequency distribution at point A similar to that at 
point B?" Contingency tables provide a useful 
technique for studying the relationships among two 
or more variables. This chapter describes the 
construction of contingency tables, and discusses 
some of the measures of association that can be 
derived from the information in contingency tables. 

5.2. Discussion. 

a. A contingency table (also referred to as a cross- 
tabulation) depicts the joint distribution of two or more 
variables. Tables 5-1 and 5-2 show examples of 
contingency tables. 

b. In the Table 5-2, the wind direction, and the month 
are variables. The classes within the variable "month" 

Table 5-1. General contingency table format. 

are June, July, and August. The classes within the 
variable "wind speed" are <_ 25 Km/hr, and > 25 
Km/hr. The first class of the wind direction is S and 
SW. The second class is W, NW, N, and Calm. The 
third class is all directions. The numbers such as 13, 
8,8, under S and SW represent the frequencies, or 
numbers of occurrences within the total sample (n = 
371). The numbers in parentheses represents the 
"expected" number of occurrences, which are 
calculated as shown. 

Expected Value = 
(row total) (column total) 

total sample size 

For example, the expected value of 11, for S and SW 
winds, is calculated as follows: 

Expected Value (11) = 
(29X145) 

371 

X 
Column 
Total 

o 

o 
o„ 

12 

o 2n 

o m2 
o 

B, B„ B 

Row Total 

N 

Table 5-2. Sample contingency table, showing a comparison of the frequency distributions of surface winds, 
in 3 separate months. 

< 25 Km/hr > 25 Km/hr 

S and SWN, W, NW, N, and Calm All directions Total 

frne 

July 
August 

Total 

13(11) 
8(9) 
8(9) 

29 

91 (101) 
74 (76) 
93 (81) 

258 

41 (35) 
28 (25) 
15 (26) 

84 

145 
110 
116 

371 

11 
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c. The data in contingency tables can be used to 
calculate various types of measures of association that 
describe the relationships between variables. Some 
of these measures of association are describe below. 

(1) The Chi-Square test. Using the observed and 
expected values from the contingency table shown 
above, the chi-square test can be used to determine if 
two variables are independent of each other, such as 
the month and the wind speed. The chi-square statistic 
is 

x2 = I 
(observed value - expected value) 

expected value 

"Small" values of the chi-square statistic indicate the 
absence of a relationship between the variables, 
meaning the variables are statistically independent. 
A "large" chi-square statistic implies a relationship 
exists between the variables. Chi-square tables are 
used to determine whether the values are "small" or 
"large," at various probability levels for various degrees 
of freedom. In our example the chi-square value is 
10.35, which is calculated as follows: 

„2       (13 - 11?      (8 - 9?      (8 - 9?      (91 - 101? 
11 101 

(74-76?      (93-81?      (41-33?      (28-25?   ,   (15-26? 4.  __  4.  _  4.    4.  _—  -j- 
76 81 33 

10.35. 

25 26 

To use a chi-square table, one must first determine 
the degrees of freedom, v • In the present example 

V = (rows - V)(columns — 1) = 2 x 2 = 4. 

In this case, c2 = 10.35. The correct interpretation of 
the test is that if you sample repeatedly from a chi- 
square distribution with 4 degrees of freedom, you 
will calculate an c2 > 10.35 only three times out of 
100 on the average. Obviously, this chi-square value 
is "large." Thus, the month and wind speed are 
related.Chi-square is sensitive to sample size, and is 
therefore not appropriate as a measure of strength of 

relationship. To measure strength of relationship, the 
dependence of chi-square on sample size must be 
eliminated. 

(2) The SAS FREQ procedure will generate the chi- 
square test, as well as other measures of the strength 
of relationship such as the contingency coefficient and 
the phi coefficient, which are calculated as shown 
below. 

Contingency Coefficient = 

Phi Coefficient (O) = 

The contingency coefficient and the phi coefficient 
both have a value of zero when chi-square is zero 
(when no association exists between the two variables). 
The contingency coefficient has a lower bound of zero, 
attained when chi-square is zero. The contingency 
coefficient is always less than one, but the upper bound 
approaches one as the size of the contigency table 
increases (Shulman, 1992). The limits of the phi 
coefficient are -1 < phi < +1 for a 2 x 2 contigency 
table and 0 < phi < +1 otherwise. The phi coefficient 
is usually used only for tables with two rows and/or 
two columns since its upper bound may be larger than 
one for larger tables. 

(3) Cramer's V. Cramer's V is used to measure the 
strength of relationships for tables with more than two 
rows and two columns. It is calculated as shown below 

V = 
O 

Jmin(r - l,c - 1) 

In this formula, min (r-1, c-1) stands for the smaller 
of (# of rows - 1) and (# of columns -1); F is the phi 
coefficient. Cramer's V has a range from zero to one, 
with a value of zero indicating no association exists 
between variables. 

12 
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Chapter 6 

PROBABILITY 

6.1 Introduction. Probability is usually thought of 
as the fraction of time that an event A will occur, in 
the total set of observations. The terms joint, marginal, 
and conditional probability are common terms. This 
chapter provides definitions of the various types of 
probability, and gives an example of how probability 
can be used in meteorology. 

6.2 Discussion. 

a. Probability values can range from 0 to 1. If the 
probability of a given event is 1 then that event is 
known as a certain event. If the probability of a given 
event is 0, it is referred to as an impossible event. 

b. Computing Probability. The terms probability and 
relative frequency are often interchanged. The relative 
frequency of an event A is simply the ratio of the 
number of occurrences of event A (NA) divided by the 
total number of all possible events (N). A relative 
frequency is only an approximation to the probability. 

P(A) « NA 

N 
(1) 

Theoretically, this value becomes the exact probability 
only in the limit as N approaches infinity: 

P(A) =   lim ^ 
(2) 

In practice, we use equation (1) to estimate 
probabilities. However, this introduces an uncertainty 
that increases as N decreases. 

c. Independent and Dependent Events. Two events 
(A, B) are said to be dependent if the probability of 
occurrence of one event is affected by the occurrence 
of the other event. Two events (A, B) are said to be 
independent if the probability of occurrence of one 
event is not affected by the occurrence of the other 
event. 

the intersection of A andB. The intersection of A and 
B is denoted by (A n B). The probability of 
(A n B), is given by: 

NT <3> 
P(AnB) = ^ 

where N (A n B) is the total number of events in 
(A n B) and N is the total number of all possible 
events. The probability of (A n B) is referred to as 
the joint probability of events A and B, and can be 
written P(AB). 

e. Marginal Probability. The marginal probability is 
the sum of the joint probabilities of a given event. 
The marginal probability of event A. is given by: 

P(Ai) = £P(AiBj) 
(4) 

j=i 

where P(A. B.) represents the joint probability of 
events A. and B, with T being the total number of 
categories. 

f. Union. The number of cases which belong to either 
event A or event B., or both A. and B. is called the 
union of A. and B. and is designated A. u B.. The 
probability of A u B. is given by: 

P(Ai u Bj) = P(Ai) + P(Bj) - P(A; n Bj).   (5) 

g. Conditional Probability. The probability that an 
event A. occurs given that B. has occurred is called 
the conditional probability of A. given B. and is 
denoted by P(A.IB). The conditional probability is: 

P(AilBj) = 
P(Ai n Bj) 

P(Bi)     . (6) 

If P(B.) = 0 (i.e., B. is an impossible event), then the 
conditional probability of A. given B. is undefined. 

d. Joint Probability. The set containing the number 
of cases which belong to both events A and B is called 

13 
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6.3 Example. The following examples may help illustrate the differences between these various terms. When 
computing probabilities, it is best to start with a contingency table, as shown below. 

B 
n(\Bn) 
n(A2Bn) 

Am n(KBx) n(AmB2) n(AmBn) 

a. Consider the following example. Event Al is the observation of a halo around the moon. Event A2 is the 
complement of this event - no halo is observed. Event Bj is the occurrence of precipitation with 48 hours. Event 

B2 is no precipitation with 48 hours. 

PRECIP (B,) NO PRECIP (B2) MARGINAL TOTAL 
HALO(Aj) 497 149 646 
NO HALO (A2) 819 819 1638 
MARGINAL TOTAL 1316 968 2284 

Using the data in this contingency, the following probabilities can be calculated: 

b. Joint Probabilities: 

PCAjB,) = P(A, g B,) = 497/2284 = 0.218 

P(AjB2) = 149/2284 = 0.065 

P(A2Bj) = 819/2284 = 0.359 

P(A2B2) = 819/2284 = 0.359. 

c. Marginal Probabilities: 

PCA,) = PCAjB,) + P(AjB2) = 646/2284 = 0.283 

P(A2) = 1638/2284 = 0.717 

P(B,) = 1316/2284 = 0.576 

P(B2)= 968/2284 = 0.424. 

d. Unions. The probability P(Aj E Bt) is the probability of having either a halo around the moon or rain within 48 

hours: 

P(A1 E Bj) = PCAj) + PCB^ - P(Aj Q Bj) = 0.283 + 0.576 - 0.218       = 0.642 

P(A2 E Bj) = 0.717 + 0.576 - 0.359 = 0.935 

P(Aj E B2) = 0.283 + 0.424 - 0.065 = 0.641 

P(A2 E B2) = 0.717 + 0.424 - 0.359 = 0.782. 

14 
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e.  Conditional Probabilities: 

PCAJIBJ) = PCAJB^/PCBJ) = 0.218/0.577 = 0.378 

PfAjIB,) = PCAJB^/PCBJ) = 0.359/0.577 = 0.622 

PCAJIBJ) = P(Ap2)/P(BJ = 0.065/0.423 = 0.154 

P(A2IB2) = P(A2B2)/P(B2) = 0.359/0.423 = 0.849 

PCBjIA^ = PCAjB^/PCA,) = 0.218/0.283 = 0.770 

PCBJAj) = PCAJB^/PCAJ) = 0.065/0.283 = 0.230 

P(B,IA2) = PCAjB^/PCA,) = 0.359/0.717 = 0.501 

P(B2IA2) = P(A2B2)/P(A2) = 0.359/0.717 = 0.501. 

f. Interpretation. The probability of observing a halo 
around the moon, P(Aj), is 0.283 (28.3 percent). The 
probability of rain occurring within any given 48-hour 
period, P(Bj), is 0.577. The probability of having 
both a halo around the moon and rain within a 48- 
hour period, PCAJBJ), is 0.218. The probability of 
having rain occur within 48 hours given you see a 
halo around the moon, PCBJAj), is 0.770. The prob- 
ability that a halo was present at a particular time given 
that rainfall occurred within a subsequent 48-hour 
period, PCAJEj), is 0.378. Note the difference be- 
tween these last three probabilities. In the first one, 
PCAjBj), there are no assumptions.   This is the un- 

conditional probability of observing both these events. 
The last two probabilities are conditional. With the 
second probability, PCBJAj), it is given that event At 

(halo) has already occurred, and this value then repre- 
sents the probability that event Bl (rain) will occur. 
With the last probability, P(A1IB1), you are given that 
event Bj (rain) has occurred and this value then repre- 
sents that probability that event A: (halo) will occur. 
Thus, one can conclude from this set of data that it is 
likely rain will occur within 48 hours of seeing a halo 
(probability of 77 percent). However, most instances 
of rainfall are not preceded by a halo (only a 38 per- 
cent probability that a rain event is preceded by a halo). 

15 
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Chapter 7 

ODDS RATIO 

7.1 Introduction. There is often a confusion of 
probability with odds. For example, a probability of 
50 percent has been mistakenly interpreted to mean 
that the odds were 50 for one event against 100 for 
the other. If odds were added to the statement of 
probability, then this difficulty could be avoided. 
Another measure of association between two variables 
is the odds ratio. The odds ratio can be used as a 
decision making tool and can enable one to know the 
odds of an outcome. This chapter discusses definitions 
of probability, odds, odds ratio, and how both the SAS 
FREQ and SAS CATMOD procedures can be used to 
generate the odds ratio. 

7.2 Discussion. 

a. Definitions. 

(1)   Probability - Probability (Pj) is based on the 
ratio of number of favorable events to number of 
possible  events where Q: is 1 - Pr   Ql is ratio of 
number of unfavorable events to number of possible 
events. 

Table 7-1.   Precipitation within 48 

(2) Odds - If Pj is the probability or rate at which an 
event occurs in the population where Qt = 1 - Pj, then 
the odds associated with that event are P/Qr 

(3) Odds Ratio - If Pj is the probability or rate at 
which an event occurs in the first population where 
Q, = 1 - Pj, then the odds associated with that event in 
the first population are P/Qj denoted by Or Similarly, 
the odds associated with the event in the second 
population are P2/02 denoted by 02. The odds ratio is 
simply the ratio of these two odds, 02/Ot or P2Q/ 

PA- 

b. Example. In Table 7-1, individual p values are 
obtained by dividing each of the individual n values 
by n . The odds ratio is then calculated. 

c. Interpretation of odds ratio. Odds ratio of 1.9 
indicates that halo events are 1.9 times as likely to be 
associated with precipitation within 48 hours as no 
halo events. 

hours. 

Yes No Total 

Halo 
No Halo 
Total 

Halo 

No Halo 
Total 

151 (nn) 
109 (n21) 
260 (n,) 

0.255 (= pn) 

0.184 (= p21) 
0.439 (=Pl) 

140 (n12) 
192 (n22) 
332 (n2) 

0.236 (=p12) 

0.324 (=p22) 
0.560 (= p2) 

291 (n,) 
301 (n2) 
592 (n) 

0.492 (=Pl) 

0.508 (= p2) 
1. 

Odds ratio = 
(nu)(n22) 

(n12)(n21) 

Pn 
Pl2 

Pa 
P22. 

(151X192)     0.255/0.236 
Odds ratio = 

(140)(109)      0.184/0.324 

Odds ratio = 1.9. 
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d. SAS FREQ and CATMOD code for odds ratio. 

*READ DATA FOR PRECIPITATION 
*HALO, AND WEIGHT 

DATA HALO; 
INPUT PRECIP HALO WT @ @; 
CARDS; 
1 1      151      1      0      109 
2 1       140      2      0      192 

PROC FORMAT; 
VALUE PRECIP 1 = 'YES' 2 = 'NO'; 
VALUE HALO   1 ='YES'0 ='NO'; 
PROC FREQ DATA = HALO     ORDER = DATA; 
WEIGHT WT; 
TABLE PRECIP * HALO/MEASURES NOROW NOCOL NOPERCENT; 
FORMAT PRECIP PRECIP. HALO HALO.; 
PROC CATMOD DATA = HALO; 
WEIGHT WT; 
DIRECT HALO; 
MODEL PRECIP = HALO/WLS; 
FORMAT PRECIP PRECIP. HALO HALO.; 
RUN; 

e. Output of SAS FREQ. 

Estimates of Relative Risk    (Row 1/Row 2) 
Type of Study Value 

Case Control (odds ratio)      1.9 

f. Output of SAS CATMOD 

Analysis of Weighted-Least-Squares Estimates 

Effect Parameter Estimate 

Intercept 1 -0.5661 

Halo 2 0.6418 

Odds ratio estimate = e06418 = 1.9 
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Chapter 8 

BEST GUESS INTERPRETATION OF MEAN, MEDIAN, AND MODE 

8.1 Introduction. Statisticians are frequently asked 
to identify a single statistic that provides the "best" 
measure of a typical or average value for a given 
meteorological variable. Statisticians refer to these 
as measures of central tendency. The three most 
common measures of central tendency are the mean, 
mode, and median. This chapter presents definitions 
of each of these measures, along with descriptions of 
some of their advantages and disadvantages. 

8.2 Discussion. 

a. The mean is the sum of the observations, divided 
by the number of individual observations. The median 
(for ungrouped data) is the value of the middle 
observation, when all the observations are arranged 
in either ascending or descending order. The mode is 
the observation that occurs most frequently in the data 
set. These measures of central tendency are considered 
typical (or average) in the sense that they are 
sometimes used to represent all the individual 
observations of a given element. As an example, 
consider the following data set: {23, 25, 25, 26, 28, 
31,33,33,37,37,37,37,41}. 

1) The sum of all the observations is 413, and 
there are 13 observations. The mean is then given 
by (413/13) = 31.8. 

2) The median is the value in the middle of the 
sorted data. With 13 observations, the median is 
the 7th value, which is 33 in this case (half of the 
values are less than the median, half are greater.) 

3) The value 37 occurs four times. This is more 
frequent than any other value, so the mode is 37. 

b. There is really no way to say, in general, which is 
the best measure of central tendency. Each has its 
strengths and weaknesses. The best choice depends 
upon what you are trying to summarize about the data 
distribution. 

c. Suppose you wanted to guess the value of an 
observation picked at random from a data set, and 

you wanted to be correct the highest percentage of 
the time. In this case, the best guess is the mode. 

1) The mode is the value which occurs most 
frequently. Thus, in the case of a random sample, 
it is the most likely to be selected. 

2) In general, however, the mode is inferior to 
the mean and median as a measure of central 
tendency. Often data sets have more than one 
mode (multimodal distributions). Cloud-cover 
distributions often have two modes (bimodal) - 
completely clear and completely overcast. Even 
when a distribution has only one mode 
(unimodal), it is possible for the mode to be at 
an extreme value rather than at a typical value. 
Consider daily snowfall amount data, the mode 
at Scott AFB is a trace, but does the mode 
describe the data set sufficiently? 

d. The median is the best guess of a typical value if 
one wants to come as close as possible to the average, 
regardless of the sign of the error (absolute error). 

1) In descriptive statistics, the median is 
frequently used. (In descriptive statistics, one 
merely describes what has occurred — compare 
this with inferential statistics described in 
paragraph e. 1, page 20). 

2) The median appears to be a better measure of 
central tendency than the mean when dealing with 
extreme observations. The mean is strongly 
affected by large numbers, even when they have 
small probabilities. 

3) Unless you are dealing with a data set that 
follows (or nearly follows) a normal (Gaussian) 
distribution, the median, together with quartiles, 
gives a more precise representation of the 
distribution than does the mean and standard 
deviation (Brooks and Carruthers 1953). The 
median is the value of the 50th percentile, the 
quartiles are the values of the 25th percentile and 
the 75th percentile. 
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e. The mean provides the best guess for any randomly 
selected variable, provided that one is interested in 
making the signed error (deviation from the mean) as 
small as possible (zero, on the average). The mean is 
also a best guess if one wishes to make the average 
squared error as small as possible. 

1) In inferential statistics, the median is usually 
inferior to the mean (In inferential statistics, 
one uses what has been observed, the random 
sample, to infer properties of the population.). 
The median is difficult to work with 
mathematically, while the mean is very easy to 
work with. 

2) In some cases, the mean can be anything but 
a typical value. Consider this extreme case: a 
station has the following monthly cloud-cover 
distribution: clear—75 percent, scattered—5 
percent, broken—5 percent, overcast—15 

percent. The mean cloud-cover is 0.16. But a 
cloud cover of 0.16 cannot be considered typical 
when the whole range of values from 0.01 to 
0.49 occurs only 5 percent of the time. In fact, 
cloud-cover distributions often have modes at 
the extreme values (clear and cloudy), and as a 
result the mean is often the least likely value to 
occur. 

8.3 Conclusion. The choice of a measure of central 
tendency depends on the distribution of the data, and 
on what one is trying to infer or describe about the 
data distribution. It is often useful to compare the 
mean, median, and mode. When all three are about 
the same, you can be confident this value can be 
considered a typical (or average value). When the 
three values are very different, careful analysis of the 
data is required to select the best guess of the "typical" 
value. For symmetrical data, the mean, mode, and 
median are all equal. 
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Chapter 9 

INTERPRETATION OF SAS UNIVARIATE OUTPUT 

9.1 Introduction. The SAS UNIVARIATE procedure 
produces a wide range of descriptive statistics. This 
section provides explanations of some of the results. 

Table 9-1   is  an example of a typical SAS 
UNIVARIATE output. 

Table 9-1. Example of output from PROC UNIVARIATE. 

Variable: C3 

MOMENTS 
N 45 
Mean 5.75556 
STD DEV 3.14899 
SKEWNESS 1.54289 
USS 1927 
CV 54.7122 
T:MEAN=0 12.2609 
SGN RANK 517.5 
NUM 0=0 45 
W:NORMAL 0.822851 

STEM LEAF 
17 0 
16 
15 
14 
13 0 
12 0 
11 0 
10 
9 000 
8 00000 
7 000 
6 00 
5 00000000 
4 000000 
3 00000000000000 
2 

SUM WGTS 
SUM 
VARIANCE 
KURTOSIS 
CSS 
STD MEAN 
PROB>|T| 
PROB>|S| 

PROB<W 

# 
1 

1 
1 
1 

3 
5 
3 
2 
8 
6 

14 

VALUE COUNT 
3 14 
4 6 
5 8 

PERCENTS 
CELL CUM 
31.1  31.1 
13.3  44.4 
17.8  62.2 

SAS UNIVARIATE 

QUANTILES(DEF=4) 
45 

259 
9.91616 
2.70526 
436.311 

0.469424 
0.0001 
0.0001 

<.01 

BOXPLOT 
0 

100% MAX 
5% Q3 

50% MED 
25% Ql 
0% MIN 

RANGE 
Q3-Q1 
MODE 

17 
8 
5 
3 
3 

14 
5 
3 

99% 
95% 
90% 
10% 
5% 
1% 

17 
12.7 
9.8 

3 
3 
3 

EXTREMES 
LOWEST HIGHEST 

3 9 
3 11 
3 12 
3 13 
3 17 

I     I 

NORMAL PROBABILITY PLOT 
17.5+ 

14.5+ 

11.5+ 

8.5 + 

5.5+ +* 
I ***# 

****************** 
2.5+ +++ 

++ 
++++ 

**** 
+** + 

-2 

FREQUENCY TABLE 

VALUE COUNT 
6 2 
7 3 
8 5 

CELL 
4.4 
6.7 

11.1 

CUM 
66.7 
73.3 
84.4 

VALUE COUNT 
9    3 

11 1 
12 1 

CELL 
6.7 
2.2 
2.2 

CUM 
91.1 
93.3 
95.6 

VALUE COUNT  CELL  CUM 
13     1  2.2  97.8 
17    1  2.2 100.0 
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9.2 Discussion. 

a. Variable. The name of the variable analyzed in the 
UNIVARIATE procedure ("C3" in this example). 

b. N. The number of observations. In this example 
N = 45. 

c. Mean. The "average" value. The mean is defined 
as the sum of all the values of the variable, divided by 
the total number of observations. 

2*' 
mean = (x) = —— 

n 

259 

45 
= 5. (1) 

d. Standard Deviation. The standard deviation is 
defined as the square root of the variance. This gives 
a measure of the dispersion of all values around the 
mean. The formula for estimating the standard 
deviation is 

^r\2 X^-x) 
s = i=l 

n-1 

corrected sum of squares 

n-1 

(2) 

s = J^ii=3.15. 
44 

When we have a symmetrical bell-shaped distribution, 
about 68 percent of the cases in the sample will fall 
between the limits of ±1 standard deviation from the 
mean. About 95 percent will lie between ±2 standard 
deviations, and nearly all the cases (99.75 percent) 
between ±3 standard deviations. 

e. Skewness. Skewness is a measure of how 
nonsymmetric a distribution is. If the data is normally 
distributed, then the computed skewness value will 
be close to zero. Positive skewness indicates that the 
distribution has a long tail to the right (mean > median 
> mode). A distribution is negatively skewed if the 
left tail is longer (mode > median > mean). See 
Figures 9-la-c. 

Figure 9-1 a. Symmetrical. Figure 9-1 b. Positively skewed. Figure 9-1C. Negatively skewed. 
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f. USS. Unconnected sum of squares, denoted by 
Sx2. The unconnected sum of squares can be used to 
compute the variance (s2) as follows: 

2      _ —2 

s2   =   ^ 
Exj - nx (3) 

n - 1 

g. CV. The coefficient of variation (CV) is a unitless 
statistic used to compare the dispersion of two or more 
distributions. The coefficient of variation is obtained 
by dividing the standard deviation by the mean. SAS 
expresses the coefficient of variability as a percentage, 
but does not include the percent sign. For variable 
C3 a CV of 54.7122 is 54.7122 percent. To better 
understand this term, consider the following 
hypothetical example for annual rainfall rates: 

Tropical Station: 

Sample Mean =100 inches 
Standard Deviation =18 inches 

Midlatitude Station: 

Sample Mean = 30 inches 
Standard Deviation = 8 inches 

At a glance, rainfall rates at the tropical station may 
appear to vary more than rainfall rates at the 
midlatitude station. However, rainfall rates at the 
tropical station vary less as a percentage of their own 
mean than do those at the midlatitude station. 

h. T: Mean = 0. Student's t value for testing the 
hypothesis that the population mean is zero. 

i. Prob > VJVL If this probability value is less than 
0.05, then we can say that according to Student's t 
value the population mean is not equal to zero, at the 
five percent level of significance. 

j. SgnRank. The signed rank test is a substitute for 
Student's t-test. It is a nonparametric test; there is no 
requirement for the data to be normally distributed. 

k. Num jt 0. The number of nonzero observations. 
The number of nonzero observations is 45 for variable 
C3. 

1. Prob > VzSVi If the probability value is less than 
0.05, then we can say that the population mean is not 
equal to zero at the five percent level of significance, 
according to the signed rank test. 

m. W: Normal. Statistical test for normality. The 
Shapiro-Wilks W statistic is performed when the 
number of observations is less than 2,000. The 
Kolmogorov-Smirnov D statistic is calculated for 
samples larger than 2,000. 

n. Prob < W or Prob > D. Probability value for 
testing the hypothesis that the data comes from a 
normal distribution. If the probability value is less 
than 0.05, then the conclusion of either the Shapiro- 
Wilks W statistic or Kolmogorov-Smirnov D Statistic 
is that we dot not have a normal distribution at the 
five percent level of significance. 

Coefficient of variation at tropical station: x= 0.18 
or 18 percent. 

Coefficient of variation at midlatitude station: x = 0.26 
or 26 percent. 

Therefore, the variability for the rainfall rates of the 
midlatitude station is greater than the variability for 
the rainfall rates of the tropical station. The midlatitude 
station's standard deviation is 26 percent of its mean, 
while the tropical station's standard deviation is 18 
percent of its mean. 

o. Sum Wgts. The sum of the weights of the 
observations. For unweighted data, the sum of the 
weights is identical to the number of observations. 

p. Sum. The total of the observations. For variable 
C3 the sum is 250. Use the sum to compute the mean. 

q. Variance. The variance is a measure of the 
distribution of all values around the mean value. The 
formula for finding the variance, s2, is 

5>-x)2 

s2   = (4) 
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where x. is the rth data point and x is the mean. 
Variance for variable C3 is 

corrected sum of squares _ 436.31 ^ 

n - 1 44 
By knowing the mean and the variance of a 
distribution, one can estimate the probability that a 
given value, or range of values, will be observed. 

r. Kurtosis. Kurtosis is a measure of "tail heaviness." 
For a normal distribution, kurtosis will be zero 
(according to the SAS formula). Some authors define 
a coefficient as 3.0 for a normal distribution, however, 
they omit the subtraction of 3.0 in their kurtosis 
formula. A distribution with a high peak, steeper than 
the normal distribution, exhibits positive kurtosis. A 
distribution that is flatter than the normal will have a 
negative value of kurtosis. Kurtosis will be negative 
for a bimodal curve. See Figure 9-2. 

Peaked (Positive Kurtosis) 

Flattenend 
(Negative 
Kurtosis) 

Figure 9-2. Kurtosis 

s. CSS. Corrected sum of squares (X(x; -x)2 )• 
The corrected sum of squares is used to compute the 
standard deviation and variance as discussed in 
paragraphs 2d and 2q. 

t. StdMean. The standard error of the mean. Standard 
error of the mean is the standard deviation (3.14899) 
divided by the square root of n (45), the number of 
observations. The standard error of the mean is used 
to obtain the student's t value. 

StdMean = 
Std Dev 

yfn 

3.15 

45 
= 0.47. 

(6) 

t = ™ = 12.26. 
0.47 

u. Quartale. The term quantile is not as well known 
as the terms median, quartile, decile, and percentile. 
The median is the 0.5 quantile, the upper and lower 
quartiles are the 0.75 and 0.25 quantiles, and the 99 
percentile is the 0.99 quantile. 

v.   100 percent Max.   The maximum value, 
maximum value for variable C3 is 17. 

The 

w. Qj, Median, Q3. There are three values (Q,, 
median, Q3) that partition a frequency distribution into 
four equal parts: 

1) Q3. Q3 is the value at the end of the third quarter 
of the sequence of measured values, ordered by size. 
For variable C3 a Q3 of 8 tells the analyst that 8 is 
greater than 75 percent of the 45 values. 

2) Median. The median is that value in the sequence 
of individual values, ordered according to size, which 
divides the sequence in half. It is important to note 
that the median is not influenced by extreme values, 
whereas the arithmetic mean is rather sensitive to 
extreme values. A median of 5.0 for variable C3 tells 
the analyst that 50 percent of the 45 values are above 
5.0, and 50 percent of the values are below 5.0. 

3) Qr Qj is the value that lies at the end of the first 
quarter of the sequence of measured values, ordered 
by size. For variable C3 a Qj of 3 tells the analyst that 
3 is greater than 25 percent of the 45 values. 

x. Opercent Min. The smallest value. The smallest 
value for variable C3 is 3. 

y. Range. The range is the difference between the 
highest and lowest values, and measures the spread 
of the data A range of 14 represents a difference 
between 17 (highest) and 3 (lowest). 

z- Q3 - Qr 
Tne difference between the upper and 

lower quartiles. For variable C3 the difference between 
Q3 (75 percent quartile) and Q1 (25 percent quartile) 
is 8 - 3 = 5. 

aa. Mode. The most frequent sample value. For 
symmetrical (unimodal) distributions, the mean, 
median, and mode are equal. For variable C3 the most 
frequent sample value is 3 with a count of 14. 
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bb. 99 percent, 95 percent, 90 percent, 10 percent, 5 
percent, 1 percent Percentiles. The 99th, 95th, 90th, 
10th, 5th, and lstpercentile values. Thepthpercentile 
is defined as a point below which p percent of the 
cases fall. A 99th percentile of 17 means that 99 
percent of the data for variable C3 falls below 17. 
(Percentiles are sometimes called deciles.) 

cc.   Extremes. 
values. 

The five largest and five smallest 

dd. Stem Leaf. A stem-and-leaf plot is printed if N 
(the number of observations) is no more than 48. A 
horizontal bar chart is printed if the number of 
observations is greater than 48. A stem-and-leaf 
display is an adaptation of a histogram. In a stem- 
and-leaf display, the bars are proportional to the 
number of data points in each class. The entries allow 
the analyst to see how the data are distributed within 
each such class. 

ee. Box plot. A box plot is used to summarize a set 
of data in terms of a few easily obtained and 
understood numbers. The bottom and top edges of 
the box are located at the sample 25th and 75th 
percentiles. The center horizontal line is drawn at the 
sample median and the central plus sign (+) is at the 
sample mean. An interquartile range is the distance 
between the 25th and 75th sample percentiles. Any 

value more extreme than this is marked with a zero if 
it is within three interquartile ranges of the box, or 
with an asterisk (*) if it is still more extreme. 

ff. Normal Probability Plot. If the data was from a 
normal distribution, the normal probability plot should 
approximate a straight line. Asterisks (*) mark the 
data values. The plus signs (+) provide a reference 
straight line. If the data was from a normal 
distribution, they should tend to fall along the reference 
line. A large number of visible + signs indicate a 
non-normal distribution. If the sample is from a 
normal distribution, then the asterisks form a straight 
line and this covers most of the + signs. 

gg. Frequency Table. 

1) Value. Frequency table of variable values. Variable 
C3 ranged from 3 through 17. 

2) Count. For variable C3, the value 3 occurred 14 
times in a sample of 45. 

3) Cell. For variable C3 a value of 3 occurred 14/45 
or 31.1 percent of the time in a sample size of 45. 

4) Cumulative. A cumulative frequency distribution 
shows, for each cell, the total number of observations 
in all cells up to and including that cell. 
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Chapter 10 

TTESTS FOR COMPARISONS OF INDEPENDENT SAMPLES AND PAIRED DATA 

10.1 Introduction. The t test is a statistical tool that 
can be used to determine if values from two data sets 
are statistically different from each other. One of two 
variations of the t test is used, based on whether the 
two samples being tested consist of independent data, 
or paired (correlated) data. If the samples are 
independent, the "standard" t test is used. The "paired" 
t test is used if the two samples are correlated. This 
chapter describes the SAS procedures used for these t 
tests. 

10.2 T Test for Independent Samples. 

a. The SAS procedure PROC TTEST is used to 
compare two independent samples. PROC TTEST 
tests the hypothesis that the difference between the 
two sample means is zero. 

b. An example (taken from Brooks and Carruthers) 
will help to illustrate the use of this t test. Suppose 
we want to determine if the frequency of gale strength 
winds during the years 1894-1903 is the same as the 
frequency from 1912-1914. The variable GALE 
represents the frequency of gales, TIME represents 
the year, a "0" is used to identify data taken from 
1894-1903, and a "1" represents data from 1912-1914. 

c. The null hypothesis being tested is that the two 
population means are equal (the mean gale frequency 
from 1894-1903 equals the mean gale frequency from 
1912-1914). We test this hypothesis with the t test 
formula for independent samples, assumption of 
equality of population variances, and unequal sample 
sizes x,-x, 

''Pooled" standard deviation is 

t = 
1l+n2 

n,n 

SP = 

(ni-lX+(n2-l)s2
2 

«j + n2 - 2 
(2) 

In this example the value for t is -4.21. The calculated 
t value is compared to a critical value from a statistical 
table, based on the appropriate degrees of freedom 
and level of significance (in this case the degrees of 
freedom is nx + n, - 2 = 10). The t value for 10 degrees 
of freedom, at a level of significance of a = .05 is 
2.201. Since the calculated t is greater than the critical 
value, one rejects the null hypothesis and assumes 
the population means are not equal. 

d. The following SAS code is used to run this test: 

DATA; 
INPUT GALE TIME; 
CARDS > 
24 0 
14 0 
7 0 
3 0 
5 0 
2 0 
9 0 
5 0 
6 0 
27 1 
21 1 
36 1 

PROC TTEST; 
CLASS TIME; 
VAR GALE; 
RUN; 

n\        This SAS program will generate the following output: 
1"2 

TTEST PROCEDURE 

Variable: Gale 
Std Std 

Time        N Mean Dev Error Min Max 
0             9 8.33 6.85 2.28 2.0 24.0 
1             3 28.0 7.55 4.36 21.0 36.0 

Variances T DF Prob >|T| 
Unequal -3.996 3.2 0.0258 
Equal -4.214 10.0 0.0018 

For H0:  Variances are equal, F'    = 1.21 DF =   (2,8) PROB  >  F' = 0.6934. 
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e. The SAS TTEST procedure performs two tests, 
one which assumes equal variances, and one that does 
not. Consult the results of the F test at the bottom of 
the printout to decide which t test to use. In this case 
the "PROB > F" value is greater than our level of 
significance (0.6934 > 0.05), so one can accept the 
null hypothesis that the population variances are equal. 
Based on this conclusion, the t test results on the 
second line of output (assuming equal variances) are 
used. Here, the "PROB > T" value is less than our 
level of significance (0.0018 < 0.05), so the null 
hypothesis that the population means are equal is 
rejected. 

10-3. T Test for Paired Observations. 

a. In cases when observations are not independent of 
each other, use of the t test described above is 
inappropriate. The SAS procedure PROC MEANS 
is used to compare two samples consisting of paired 
observations (data sets that are not independent of each 
other). In this case the hypothesis being tested is 
slightly different from the previous example. PROC 
MEANS uses a paired t test to test the hypothesis that 
the mean of the differences between the two samples 
is equal to zero. 

b. To use PROC MEANS, you must first create a 
new variable (DIFF) containing the differences 
between the paired variables. The options "T" (t test) 

and PRT" (probability value associated with t) within 
PROC MEANS can then be used to test whether the 
mean difference is different from zero. 

c. The following example will help illustrate the use 
of the t test with paired data. In this example, X and 
Y represent the paired observations (for example, 
temperature measurements taken at the same place 
and time by two different instruments). The data is 
shown in Table 10-1. 

The formula for the paired t test is 

d 
t = 

yfn 
(3) 

where d = the mean of the differences 
and sd = the standard deviation of the difference 

' n 

n 1 rt 

ti     " tr 
(4) 

In this case t = 2.798. From a table of t values, the 
critical t value is 2.365 (at a 95 percent confidence 
level, with 7 degrees of freedom). Since the t value is 
greater than the critical value, analysts reject the null 
hypothesis and conclude that the mean difference is 
not equal to zero. 

Table 10-1. Example paired data. 

Obs. X. Y D. D2 

1       4.0 3.0 1.0 1.00 
2       3.5 3.0 0.5 0.25 
3       4.1 3.8 0.3 0.09 
4       5.5 2.1 3.4 11.56 
5       4.6 4.9 -0.3 0.09 
6       6.0 5.3 0.7 0.49 
7       5.1 3.1 2.0 4.00 
8       4.3 2.7 1.6 2.56 
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d. The SAS code to run this test is shown below. 

DATA; 
INPUT XY; 
DIFF = X-Y; 
CARDS; 
(data) 

PROC MEANS MEAN STDERR T PRT; 
VAR DIFF; 
RUN; 

This SAS program will generate the following output: 

Analysis Variable: DIFF 

Mean       STD ERROR       T       PROB > IT1 
1.15 0.411 2.798      0.0266 

Here, the "PROB > ITI" value is less than the 
significance level (0.0266 < 0.05), so the null 
hypothesis is rejected and it's concluded that the mean 
difference is not equal to zero. 
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Chapter 11 

SKEWNESS AND KURTOSIS 

11.1 Introduction. The SAS UNIVARIATE 
procedure calculates skewness and kurtosis statistics, 
which are used for detecting deviations from 
normality. However, the SAS formulas for calculating 
skewness and kurtosis are different from the formulas 
used in most statistics textbooks. This chapter defines 
the skewness and kurtosis statistics, and relates the 
SAS formulas to other skewness and kurtosis 
formulas. 

11.2 Discussion. 

a. Skewness is a measure of the non-symmetry of a 
distribution (see Figures 11-la through 11-lc). 
Skewness values can be positive or negative. Positive 
skewness indicates the data distribution has a larger 
"tail" to the right (mean > median > mode). A 
distribution is negatively skewed if the left tail is larger 
(mode > median > mean). 

Figure 11-1a. Symmetrical. 

Figure 11-1b. Positively skewed. 

Figure 11-1c. Negatively skewed. 

b. Kurtosis values discriminate between a "peaked" 
and a "flat-topped" distribution (see Figure 11-2). 
Kurtosis values can be either positive or negative. 
Peaked distributions often have positive kurtosis 
values, indicating there is a large number of data values 
near the mean. A negative kurtosis value is often 
associated with a flat-topped distribution. 

Psaksd (Positiv» Kurtosis) 

Flsttsnsnd 
(Negative 
Kurtosis) 

Figure 11-2. Kurtosis. 

c. The formulas commonly used in statistics textbooks 
to compute skewness and kurtosis are shown below. 
Skewness and kurtosis are normally defined in terms 
of "moments." The mathematical notations used are 

Jb^~  (skewness) and b2 (kurtosis). 

(1) Skewness formula: 

4W = m. 

where: 

X(*i - x)3 

m, 

m, 

- J=L 

X(*i - x)2 

-  J=L 

(1) 

(2) 

(3) 

(2) Kurtosis formula: 

b2 = 
m. 

m-> (4) 
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where 

i>, - xt 
(5) 

d. As mentioned previously, the formulas used by SAS 
to calculate skewness and kurtosis differ from those 
commonly used in textbooks. The SAS 
UNIVARIATE procedure does not generate the ft\ 
(skewness) and b2 (kurtosis) statistics. Instead, the 
Fisher g statistics are calculated: gj (skewness) and g2 

(kurtosis). The gr and g2 statistics are related to the 
^/by  and b2 statistics by the following procedure: 

VbT = 
(n-2) 

M* - 1) 

b2 = 
(n - 2)(n - 3) 

g2 + 
3(n - 1) 
n + 1 

(6) 

(7) 
(n + l)(n - 1) 

where n is the sample size, g1 is the SAS skewness 
value and g2 is the SAS kurtosis value. 

e. Interpretation of skewness, ^b^ , and kurtosis, b2 

values according to Chou (1975). When 
|skewness| > 1, the distribution is highly skewed. 
When 0.5< |skewness|<1, the distribution is 
moderately skewed. When 0 < (skewness) < 0.5, the 

distribution is nearly symmetric. When the b2 statistic, 
known as kurtosis, is equal to 3, the data is said to be 
normal (bell shaped). When b2 < 3, the distribution is 
said to be platykurtic (flat). When b2 > 3, the 
distribution is said to be leptokurtic (peaked). Chou's 
interpretation of b2 can be further evaluated against 
the baseline of 3, or b2 -3 to obtain positive and 
negative kurtosis values. If b2< 3, then b2 -3 results in 
a negative kurtosis value. If b2= 3, then b2- 3 results 
in a kurtosis value of 0. If b2 > 3, then b2 -3 results in 
a positive kurtosis value. 

f. The SAS UNVIARIATE procedure does not 
evaluate the skewness and kurtosis statistics, but we 
can use a "rule of thumb" to derive meaning from the 
values calculated. If the SAS UNIVARIATE procedure 
generates skewness and kurtosis values close to 0, then 
we can assume that the data is normally or 
symmetrically distributed. If a more detailed 
interpretation is desired, the technique taken from 
Snedecor (1980) can be used as shown below: 

(1) Skewness is confirmed and the distribution is 
non-normal if 

/r   -16 
(8) 

(2) Kurtosis is confirmed and the distribution is 
non-normal if 

lb2 - 31 > 4 
24 

(9) 
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Chapter 12 

L-MOMENT METHOD AND DISCORDANCY MEASURE 

12.1. Introduction. This chapter gives definitions 
and formulas for L-moments, definition and 
formulation of the discordancy measure, and use of 
the discordancy measure statistic to quality control or 
flag the data. 

12.2. Discussion. 

a. The theory behind L-moments is not that new, but 
Hosking (1990) developed a unified approach that has 
become a competitor to other statistical techniques 
with the today's computers and statistical software. 

b. Certain linear combinations of the ranked 
observations (ordered from smallest to largest) in a 
random sample are called L-moments. Observations 
in a random sample must be ranked to compute L- 
moments. L-moments (lp l2, l3, l4) and L-moment 
ratios r3 and r4 are useful for summarizing 
distributions. The first L-moment (/;) is the arithmetic 
mean , while the second L-moment (l2) is a measure 
of dispersion similar in certain aspects to the standard 
deviation. The L-moment ratio r3 or l/l2 is referred to 
as L-skewness and is a measure of symmetry. The L- 

moment ratio r4 or l/l2 is referred to as L-kurtosis and 
is a measure of peakedness. The third and fourth L- 
moments (l3, and l4) are used to formulate the measures 
of skewness and kurtosis, respectively. The L- 
coefficient of variation or lß1 is a measure of spread 
relative to the size of the numbers in a sample. 

c. Hosking (1990) outlines L-moment formulas for 
random samples of probability distributions when 
there is knowledge of the cumulative distribution 
function (e.g., Normal or Weibull). A specific 
cumulative distribution may be specified by its L- 
moments. Hosking also outlines L-moment formulas 
for random samples from an unknown distribution. 
This chapter addresses only the formulas for random 
samples from an unknown population because L- 
moments are usually estimated from a random sample 
drawn from an unknown population. 

d. Formulas of L-moments estimated from a random 
sample drawn from an unknown distribution. 
Consider the random sample xv x2,...,xn ordered from 
smallest to largest as x,  <x,   <... <x    (an ordered 0 l:n—    2:n —        —     n:n N 

random sample). 

2>, 
/; (firstL-moment) = i=l 

l2 (secondL-moment) = 
1    n V

1 

2 12 IXfe-^J. 
»>   1 

CfiX1 

l3 (thirdL-moment) XXX(*fa.   -2XJ-n   +  Xk:n). 
V-V        i>   j>     k 

]n Y1 

4l4y U (fourth L-moment) =  -\ A       X££Xf **=» " 3xj:n+3xk:n ~ xi-.n ). 
i>   j >    k>     I 

L-skewness (r3) =   — 
h 

L-kurtosis (r*) = 
U 

L - coefficient of variation = 
h 
h 
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Note the second L-moment may also be equivalently 
written as 

h  = 
fnX1 1 

v2y 
^(2i - n -1 )Xi 

2    ,=; 

a computationally easier formulation. It follows that 
simpler variations of the third and fourth L-moments 
may also exist, and the reader may find it worthwhile 
to investigate the literature further before attempting 
calculations using the formulas given above. 

e. In the literature, conventional moments are usually 
used to estimate skewness and kurtosis. Conventional 
moments are the average of different powers of a 
random variable. Conventional moments denoted by 
the average values of third and fourth powers about 
the mean are associated with measures of skewness 
and kurtosis. According to Hosking (1990), the main 
advantages of L-moments or linear combinations of 
data over conventional moments are the smaller impact 
of outliers and the more confident inferences derived 
from smaller samples. Hosking feels that conventional 
moments result in biased results because conventional 
moments require squaring and cubing the observations 
which causes them to give greater weight to the larger 
observations. A disadvantage of the conventional 
skewness and kurtosis formulas is that when skewness 
and kurtosis values are calculated from finite samples, 
the sample skewness and kurtosis values are bounded 
and it is unusual for the sample skewness and kurtosis 
to attain the full range of values available to the 
population skewness and kurtosis. In contrast, the 
sample L-moment skewness and kurtosis values 
calculated from a sample of size n > 4 can take any of 
the feasible values of the population L-moment 
skewness and kurtosis. 

f. Discordancy Measure. 

1) Background. Hosking and Wallis (1993) have 
proposed a discordancy measure to flag data that 
needs to be checked. The discordancy measure 
can be used to identify those sites that are grossly 
discordant with the group or cluster as a whole. 
Discordancy is measured in terms of the L- 

moments of the sample data. Hosking and Wallis 
(1993) provide the framework for the discordancy 
measure. Discordancy measure is a guideline 
rather than a formal statistical test. 

2) Formal Definition. Let 

Ui  = [ti   t\   Ü f 

be a vector containing L-coefficients of variation, L- 
skewness, and L-kurtosis for individual site i. Let T 
denote transpose of row vector. Then let 

X", 
i=l u (mean) = 

n 

be the mean of all the initial sites i. Define the sample 
covariance matrix as 

n 

s = (n - /;;Xf«/-«x»r" /. 

S"1 represents the inverse of matrix S. Define the 
discordancy measure for site i as 

Z>. =  -(ui-ü)TS'1 (ut-ü). 

3) Interpretation of discordancy measure. Large 
values of D. indicate sites that are most discordant 
from the group as a whole. A given site is 
declared discordant if D. > 3. This measure 
allows the analyst to identify those sites whose 
L-moments are not consistent with other sites in 
a group and should be moved to other groups. 

g. Example of data quality check. Vogel and Lin 
(1992) has an alternative quality control measure that 
is simpler to calculate than the discordancy measure. 
The alternative measure is also a quality control check 
of data using L-skewness and L-kurtosis. If individual 
L-skewness and L-kurtosis of an individual site is 
greater than three standard deviations from the mean 
L-skewness and mean L-kurtosis of individual 
skewness and kurtosis values for a group of sites, then 
the individual site is flagged and needs to be checked. 
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12.3 Summary. c. According to Vogel, the L-moment strategy is being 
used by the National Weather Service in some 

a. L-moments can only be applied to random samples.        applications. However, other authors in the field are 
not that impressed with L-moments. L-moments have 

b. L-moments are more difficult to calculate than a tendency to give conservative values, and it is 
conventional moments; however, Hosking (1991) has difficult to determine if more conservative values are 
FORTRAN routines for using the method of L- better or not in some cases. Most people continue to 
moments. use the conventional moment formulas in their analysis 

to determine skewness and kurtosis. 
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Chapter 13 

CALCULATING PERCENTILES USING SAS UNIVARIATE PROCEDURE 

13.1 Introduction. Percentiles can provide useful 
measures of variability. By definition, the pth 

percentile of a set of measurements arranged in order 
of magnitude is that value that has at most percent of 
the measurements below it, and at most (100 - p) 
percent above it. This chapter describes how to 
calculate various default and non-default percentiles 
using the SAS UNIVARIATE procedure. 

13.2 Discussion. 

a. Percentiles divide a sample into 100 parts. The 
term percentile is frequently associated with similar 
statistical terms. For example, deciles (which divide 
a sample into ten parts) are often called the 10th, 20th, 
. . .90th percentile. Quartiles (which divide the data 
into four parts) are termed the 25th , 50th, and 75th 

percentile. 

b. The SAS UNIVARIATE procedure automatically 
calculates the 1st, 5th, 10th, 90th, 95th, and 99th percentile. 
Any other percentile from 0 to 100 may also be 
calculated using the PCTLPTS option. The examples 
below show various ways of calculating percentiles 
with PROC UNIVARIATE. 

13.3 Example. The following data set, consisting of 
40 ordered data points, will be used in our examples: 

2223334444 
4555556666 
6677777777 
88889999 10 10 

a. Percentile formula. Once the observations in a 
data set have been ordered by magnitude, a given 
percentile can be calculated as follows: first calculate 
the quantity (np/100) + 1, where n is the number of 
observations, andp is the percentile of interest. If the 
quantity (np/100) is not an integer, then the p'h 

percentile is the sample observation with order number 
(np/100). If (np/100) is an integer, the p'h percentile 
is the average of the two sample observations with 
order numbers (np/100) and (np/100) + 1. For 
example, the 60th percentile of the data set shown above 
is calculated as follows: 

n = 40; p = 60 
np/100 = 24. 

Since this is an integer, the 60th percentile is the average 
of the 24th and 25th observation. These observations are 
both 7, so the 60th percentile is (7 + 7)/2, which is 7. 

b. SAS UNIVARIATE examples. To calculate any 
percentile other than the default values provided by 
PROC UNIVARIATE, the options PCTLPTS and 
PCTLPRE must be used in the OUTPUT statement. 
The option PCTLPTS specifies which percentiles you 
wish to calculate. PCTLPRE specifies prefixes used 
to create variable names for the percentiles requested 
(similarly, the option PCTLNAME may also be used 
to create suffixes). 

1). Output of default percentiles. The following 
SAS code will create a data set called 
"RESULTS", containing the default percentiles 
listed. 

DATA; 
INPUT TEMP; 
CARDS; 
(data) 

PROC UNIVARIATE; 
VAR TEMP; 
OUTPUT OUT=RESULTS P1=P1 P5=P5 
P10=P10 P90=P90 P95=P95 
P99=P99; 
RUN; 
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2). Output of non-default percentile with a percentile name. In this case, the data set "RESULTS" will have 
the variable C_DEG, containing the 20th percentile value. 

PROC UNIVARIATE; 
VAR TEMP; 
OUTPUT OUT=RESULTS PCTLPTS=20 PCTLPRE=C_ 
PCTLNAME=DEG; 
RUN; 

(3) Output of non-default percentiles with a default percentile name. In this example the data set "RESULTS" 
will have the variables C_50, C_95, C_97.5, and C_100, with the corresponding percentiles. The PCTLPTS 
option serves as a default name when the PCTLNAME option is not used. 

PROC UNIVARIATE; 
VAR TEMP; 
OUTPUT OUT=RESULTS PCTLPTS=50, 95 TO 100 BY 2.5 
PCTLPRE=C_; 
RUN; 
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Chapter 14 

CORRELATION COEFFICIENTS 

14.1 Introduction. This chapter describes two 
methods of measuring the degree of association 
between variables: the Pearson product-moment 
correlation, and the Spearman rank coefficient. 

14.2 Discussion. The default correlation coefficient 
used in the SAS procedure PROC CORR is the 
Pearson product-moment correlation (Pearson's r). 
Pearson's r shows the degree of the linear relation 
between two normally distributed variables. If either 
variable is non-normally distributed, a nonparametric 
measure of association such as the Spearman rank 
correlation (Spearman's r) should be used. 

a. The Pearson product-moment correlation is 

n 

£(*« - *) (y, - y) 
r = i=i 

|X(«, - *)' £(,, - yf 

b. The Pearson product-moment correlation 
coefficient is only a measure of linear relation. It's of 
no use in describing nonlinear relations between two 
variables x. and y..   A zero value for r does not 

i        j i 

necessarily imply that no relationship exists between 
x. and y., only that there is no linear relationship. 
Positive values of r indicate a tendency for x. and y. to 
increase together. Negative values of r indicate that 
as x. increases, y. tends to decrease, and vice versa. 
See Figure 14-1 to see the relationship between x. and 
y. at various values of Pearson's r. 

c. The SAS procedure PROC CORR prints out a 
probability value below the sample Pearson product- 
moment correlation coefficient (r). If this probability 
value is less than 0.05 (95 percent level of confidence) 
or 0.01 (99 percent level of confidence), then we can 
say that the population correlation coefficient is not 
equal to zero. Therefore, some degree of linear relation 
exists between x. and y.. 

r   =   0 .6 r   =   0 x   =   1 

■ ■              ■ 
■ ■      ■ ■ 
- -      ■    ■ 

■ ■   ■   ■ 
3T     =     0 3T     -     -0.8 x-    =    -1 

Figure 14-1. Sample scatter plots. 
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d. The Pearson product-moment correlation is affected 
by outliers. A method to check if outliers have had an 
effect on the correlation coefficient is to compare a 
Pearson product-moment correlation based on the total 
data set with a Pearson product-moment correlation 
from a data set where the outliers have been removed. 

e. Pearson's r is appropriate only for normally 
distributed data. When any variable appears 
substantially non-normal, a nonparametric correlation 
coefficient such as Spearman's r, should be used. 
Spearman's r is calculated by first arranging the data 
in order of increasing or decreasing magnitude. The 

lowest observation is referred to as rank 1, the next as 
rank 2, and so forth to the last observation. If two or 
more observations have the same value, they are given 
an average rank (EXAMPLE: for the data set {1,2,2, 
3}, the respective ranks are {1, 2.5, 2.5, 4}). The 
Spearman rank correlation is then computed using the 
formula for Pearson's r, on the ranked data. It is best 
to think of Spearman's r as a measure of association 
or agreement. The size of the Spearman coefficient 
does tell something about the tendency of the variables 
to relate in a monotone-increasing or monotone- 
decreasing way. 
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Chapter 15 

COVERAGE USING THE BOEHM ALGORITHM ANDTETRACHORIC CORRELATION 

15.1 Introduction. If the probability of an event 
occurring at a single point is known, what is the 
corresponding probability of the same condition 
occurring along a line of sight, or in the surrounding 
area? This problem was recently addressed by Al 
Boehm, during the development of the C_CLOUD_S 
(Climatology of Cloud Statistics) program. The 
Coverage Using Boehm (CUB) algorithm that he 
developed can be used to obtain the probabilities of 
fractional coverages. This chapter discusses the CUB 
algorithm, and the required input variables (including 
the tetrachoric correlation matrix) needed to obtain a 
probability value. 

15.2 Discussion. 

a. It's not possible to estimate probabilities for 
fractions along a line-of-sight, or for portions of an 
area from historical records. However, the CUB 
algorithm, which computes the cumulative probability 
that a given coverage threshold will not be exceeded, 
can be used for this purpose. Some of the terms used 
in the application of the CUB algorithm are: 

Cover - The desired fraction of the domain (portion 
of a line or area). Cover ranges from 0 to 1. 

Mean Probability - The mean probability refers to a 
known point in the domain. The mean probability is 
obtained from historical records, and has a range from 
Otol. 

Mean Correlation - The mean correlation (f) can be 
either the mean of all the Pearson product-moment 
correlations (r..), or tetrachoric correlations (r..) 
between "n" stations in the "n x n" correlation matrix. 

r — 
1 + ru +r13 + r2l + 1 + r23 + r31 + r32 + 1 

This paper centers on only the mean of the tetrachoric 
correlations because Boehm feels that the tetrachoric 
correlation is more robust than the Pearson product- 
moment correlation. All n x n correlations between n 
stations are considered. For example, if there are 3 
stations (n=3), then the 3x3 correlation matrix is 

'12 

21 

'31 

1     K 23 

'32 

Note: Even though r12 = r21, r13 = r31, and r23 = r32, all 
intercorrelations of this equicorrelated matrix are 
summed to find the mean correlation (f )■ 

Degrees of Freedom (DOF) -The degrees of freedom 
is the number of independent dimensions (stations, 
in this case). The degrees of freedom is calculated as 
follows: 

DOF = 
l-2r + r' 

7 -(rf 

where   r   = 
2_   df + (r12f + (raf + (r21f + (if + (r23 f + (r31 f + (r32 f + (if 
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b. The CUB algorithm is provided below, followed by a definition of the terms used 

f -(ENORM(MEAN) - RMEAN)^ 
CUB = PNORM 

V JRVAR 

RVAR = ROBAR + (1 - ROBAR) X ESTME. 

RMEAN = J(l- ROBAR) X EM 

PNORM - This function computes the inverse 
transnormalization (described below). 

ENORM - This function computes the 
transnormalization (described below). 

MEAN - The historical mean probability. 

RMEAN - Represents the equivalent normal deviate 
of the mean. 

RVAR - The variance of the transnormalized mean. 

ROBAR - The mean correlation. 

ESTME - Interpolated variance between the variance 
of the median and the variance of the end point (end 
points are when cover = 0.0, and when cover = 1.0). 

EM - The transnormalized mean with respect to the 
cover and the degrees of freedom 

EM = ENORM (0.5 + (COVER - 0.5)(2" F0D) - 1)) 
where FOD is 1 over the degrees of freedom. 

c. Definition of transnormalization and inverse 
transnormalization. Since many meteorological 
variables are not normally distributed, transformations 

must be performed before statistical manipulations are 
conducted. In the CUB algorithm, ENORM is the 
function used for this purpose. ENORM performs a 
transnormalization by converting the cumulative 
probability value of a variable to an equivalent normal 
deviate (END). The ENDs tend to be normally 
distributed, with a range from -4.5 to 4.5. The inverse 
transnormalization function (PNORM) is used to 
return to the cumulative probability of the variable. 

d. Tetrachoric Correlation. The tetrachoric correlation 
coefficient is useful for estimating the degree of 
association between two variables (or two stations) 
for which we have only dichotomized (yes/no) 
information. Boehm (1993) reports that the tetrachoric 
correlation is more conservative, that is it varies less 
at different locations and times, and is more robust 
against outliers. Boehm uses the tetrachoric 
correlation formula of Panofsky and Brier (1965) in 
his computer program, but he treats the tetrachoric 
correlation formula result as an estimate of the first 
guess in an iterative solution. Transnormalization and 
inverse transnormalization are performed between the 
first guess and the final estimate of the tetrachoric 
correlation in the iterative solution (Willand, 1992). 
Using the standard contingency table notation as 
shown on the next page: 
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Table 15-1. Contingency table notation. 

STATION A 

STATION B 

RAIN NORAIN 

RAIN A B 

NORAIN C D 

The tetrachoric equation is defined as 

'K JÄD-4BC 
r, = sm 

2yfI5 + jBC 

The tetrachoric equation is accurate when (A+B)/N = 
0.5, and (A+C)N = 0.5, but for values near zero or 
one, the equation is in error. For this reason, Boehm 
uses an iterative solution or linear extrapolation to find 
a better estimate of the tetrachoric correlation. 

15.3 Example. A recent project dealing with 
precipitation data provides an example of how to apply 
the CUB algorithm. The problem involved estimating 
the probabilities of various amounts of precipitation 
coverage within a given area. The number of rain 
days for 16 stations within the area was known, making 
it possible to compute a correlation matrix, a portion 
of which is shown in Table 15-2. With this input data 
the CUB algorithm produced the coverage 
probabilities shown in Table 15-3. 

Table 15-2. Tetrachoric correlation matrix. 

SZL COU SGF TOP UIN 

SZL 1 0.87 0.81 0.82 0.78 

COU 0.87 1 0.82 0.72 0.84 

SGF 0.81 0.82 1 0.68 0.69 

TOP 0.82 0.72 0.68 1 0.68 

UIN 0.78 0.84 0.69 0.68 1 

Table 15-3. Coverage probabilities (cumulative) computed by the CUB algorithm. 

Coverage Probability Coverage Probability 

0 0.421 0.55 0.753 

0.05 0.466 0.6 0.773 

0.1 0.506 0.65 0.794 

0.15 0.542 0.7 0.813 

0.2 0.575 0.75 0.832 

0.25 0.605 0.8 0.85 

0.3 0.633 0.85 0.868 

0.35 0.66 0.9 0.886 

0.4 0.685 0.95 0.903 

0.45 0.708 1 0.92 

0.5 0.731 
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Chapter 16 

AUTOCORRELATION 

16.1 Introduction. Consider a series of observations 
{Xj, x2, x3,..., xn}. If the value of x is unaffected by 
any of the remaining values of x, then {xi; x2, x3,..., 
x } is said to form a series of independent observations. 
Meteorological observations are not usually 
independent of preceding conditions, though the 
dependency decreases with the length of time between 
successive events. The tendency for the occurrence 
of a specific event to be more probable at a specified 
time, given that it has occurred in the preceding time 
period, is known as persistence. According to Brooks 
and Carruthers (1953), a measure of persistence is the 
coefficient of autocorrelation. This chapter will center 
on the definition, application, and interpretation of 
autocorrelation. 

16.2 Background. 

a. The Pearson correlation coefficient (r) refers to the 
degree of relationship between two variables. It is a 
measure of how one variable will vary, given changes 
in the value of the second variable. The Pearson 
correlation coefficient can vary from -1 (which 
indicates a perfectly linear negative correlation) to +1 
(which indicates a perfectly linear positive correlation). 
When r is greater than 0, the two variables are 
positively correlated (as one increases, the second one 
also tends to increase); when r is less than zero they 
are negatively correlated (as one increases, the other 
one tends to decrease). 

b. Autocorrelation (also known as serial correlation) 
has many properties which are similar to the Pearson 
correlation. Autocorrelation differs in the respect that 
only one variable is considered at a time. 
Autocorrelation involves the correlation between 
different values of a single variable at different time 
intervals. Autocorrelation shows how a variable 
relates to itself for a specified time lag (a time lag is 
the length between time periods). A time lag of 1 
implies a difference of one time period. An 
autocorrelation of one time lag indicates how values 

of periods {1,2, 3, 4, ...} correlate with values of 
periods {2,3,4,5,...}. An autocorrelation of 12 time 
lags indicates how values of periods {1, 2, 3, 4, ...} 
correlate with values of periods {12, 13, 14, 15,...}. 

c. The formula for the Pearson correlation coefficient 
is 

X(xi -x )(yi - y) 
r = i=l (i) 

Sfr.-^JZür.-y)' 
i=l i = l 

where x is the sample mean for variable x, and y is 

the sample mean for variable y. 

d. The autocorrelation coefficient, rk is 

n-k 

2 to -y)(y<+k -y) 
rk = ^~ 

(2) 

2to - y ? 
«=i 

where k is the number of time lags separating yt and 

e. The SAS procedure PROC ARIMA can be used to 
generate autocorrelation values, as shown below. 

PROC ARIMA; 
IDENTIFY VAR = variable name; 
RUN; 

f. Table 16-1, next page, provides an example of the 
SAS printout from PROC ARIMA. A positive 
autocorrelation at lag 1 can be an indication of 
persistence or serial correlation. An autocorrelation 
near zero indicates a case of completely random data. 
It should be noted that autocorrelation estimates will 
not necessarily be exactly equal to zero when the 
observations are independent. 
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Table 16-1. An example of SAS printout from PROC ARIMA. 

ARIMA Procedure 

Name of variable = S. 

Mean of working series =        6 
Standard deviation     =  3.464102 
Number of observations =        10 

Autocorrelations 

Lag Covariance Correlation  -198765432101234567891 StdErr 

0 12.000 1.000 ******************** 0 

1 8.200 0.683 ************* 0.316 

2 5.000 0.417 ******** 0.440 

3 1.900 0.158 **** 0.478 

4 -1.100 -0.092 ** 0.483 

5 -3.100 -0.258 ****** 0.485 

6 -4.600 -0.383 ******** 0.498 

7 -4.900 -0.408 ******** 0.527 

g. The SAS printout provides the standard errors next 
to the sample autocorrelations for various lags. The 
standard error of a sample autocorrelation can be used 
to tell whether the autocorrelation is significantly 
nonzero. Statistically, a sample autocorrelation is 
regarded as being significantly different from zero 
(with roughly 95 percent confidence) if it is larger in 
magnitude than twice its standard error. For example, 
the autocorrelation at lag 1 (0.68) in the SAS printout 

has a standard error of 0.316. Twice this value is 0.632, 
which is less than the autocorrelation value of 0.68. 
Hence, one can conclude with 95 percent confidence, 
that the sample autocorrelation at lag 1 is significant. 
Note: There is a 5 percent chance that any given 
autocorrelation will appear to be significant when it 
is not. Law and Kelton (1991) state that good 
estimates of autocorrelation at lag 1 are difficult to 
obtain unless the sample size is large. 
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Chapter 17 

CANONICAL CORRELATION 

17.1. Introduction. The Experimental Long-Lead 
Forecast Bulletin is issued quarterly by the Climate 
Prediction Center of National Weather Service and is 
intended to present experimental long-lead forecasts 
such as three month temperature forecasts. The 
forecasts are mentioned in Climate Outlook, available 
on Internet. Canonical correlation methods are one of 
the strategies being used for the three month 
temperature forecasts issued by the Climate Prediction 
Center. At the 12th Conference on Probability and 
Statistics in The Atmospheric Sciences (1992), Chu 
and He (1992) delivered a paper on the prediction of 
Hawaiian winter rainfall using canonical correlation. 
This chapter will focus on the definitions of canonical 
correlation and how canonical correlation in the SAS 
CANCORR procedure can be used in a prediction 
equation. 

17.2. Discussion. 

a. Multiple Regression predicts a single dependent 
variable from a set of multiple independent variables 
while canonical correlation analysis enables us to 
predict multiple dependent variables from multiple 
independent variables. 

b. Definitions. 

Criterion Variables - Dependent variables. In the 
example, the dependent variables are A, B, and C. 

Predictor Variables - Independent variables. In the 
example, the independent variables are D, E, and F. 

Canonical Variable - Canonical variable is referred to 
as linear composite or linear combination of criterion 
or predictor variables. Canonical variable for criterion 
variables is denoted by ATMOS(i) where ATMOS(i) 
= UjA+ u2B+ u3C. Canonical variable for predictor 
variables is denoted by RAIN(i) where RAIN(i) = Vj 
D + v2E + v3F. 

Canonical Function - Pair of canonical variables, one 
for the set of criterion variables and one for the set of 
predictor variables. In our example the canonical 
function is (ATMOS(i), RAIN(i)). 
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Number of Canonical Functions - Maximum number 
of possible canonical functions that can be extracted 
from the set of variables equals the number of variables 
in the smallest data set, independent or dependent. In 
our example, the maximum number of possible 
canonical functions is three, (ATMOS1, RAIN1), 
(ATMOS2, RAFN2), and (ATMGSS, RAIN3). 

Canonical Correlation - Measures the strength of the 
overall relationship between the canonical variables. 
When the canonical correlation is squared, the 
canonical correlation represents the amount of variance 
in one canonical variable that is accounted for by the 
other canonical variable. 

Canonical Roots - Squared canonical correlations are 
referred to as canonical roots or eigenvalues. 

Canonical Coefficients (canonical weights) - 
Canonical weights are the coefficients of the canonical 
variables. The traditional approach to interpreting 
canonical functions involves examining the sign and 
magnitude of the canonical weight assigned to each 
predictor or criterion variable in computing the 
canonical function. Variables with larger weights 
contribute more to the canonical function. Variables 
whose weights have opposite signs would exhibit an 
inverse relationship with each other and those with 
the same sign a direct relationship. It is customary to 
standardize the canonical coefficients so that each 
canonical variable has a variance of one. Standardized 
results are considered when the different variables have 
different units. 

Canonical Loading - Correlation coefficient between 
the predictor or criterion variables and the desired 
canonical variables. 

Redundancy Index - The amount of variance in one 
set of observed variables explained by a canonical 
variable of the other set of variables. The redundancy 
measure is analogous to multiple regression, R2. A 
redundancy index of 28 percent indicates that 28 
percent of the variance in the dependent variables has 
been explained by the canonical variable for the 
independent variable set. It can be computed for both 
the criterion and predictor variables. 
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c. Prediction equation using canonical correlation 
analysis. 

(1) R - Correlation matrix where 

R = 
Rll   R12 

R21   ^22 

R, 

V1 

R 22 

V 
R, 

R„ 

- The intercorrelations among the x 
independent variables. 

- The inverse of Rn. 

- The intercorrelations among the y 
dependent variables. 

- The inverse of R22. 

- The intercorrelations of x and y 
variables. 

- The transpose of R12. 

- Canonical correlation matrix. 

I MATRIX - An identity matrix which has diagonal 
elements equal to one while all the other 
elements are zero. 

(2) Given two sets of data (x,y), the S AS CANCORR 
method provides a maximum correlation between the 
canonical variables. 

(3) Canonical coefficients (canonical weights), 
canonical variables, and canonical correlations are in 

a typical S AS output and are generated by solving the 
following equations: 

(R^-XRir1^-^1)^=0. 

(4) A prediction or regression equation can be 
determined as follows: 

y- = (vT'Au'x - (vf'Au'x + y 

where y is predicted value, u and v are the criterion 
and predictor matrices of all canonical weights 
(coefficients), u' and v' denote the transpose of u and 
v matrices, (v')"1 denotes the inverse matrix, x and 
y denote the matrices of all mean criterion and 
predictor variables, x denotes the criterion variable, 
and X denotes the canonical correlation matrix. This 
equation was documented by Pao-Shin Chu and Yu 
Xiang He (1992) at the 12th Conference on Probability 
and Statistics in theAtmospheric Sciences (1992). Chu 
and He had better results with this equation as opposed 
to using regression on the raw data. 

(5) The four most important types of output 
information derived through SAS canonical 
correlation analysis are: (a) the canonical variables, 
(b) the canonical correlations between the canonical 
variables, (c) the statistical significance of the 
canonical correlations, and (d) the redundancy measure 
of shared variance or the amount of variance in one 
set of variables explained by a linear composite of the 
other set of variables. It can be computed for both the 
dependent and the independent sets of variables. 
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d. SAS program to calculate canonical correlation. 

♦PROBLEM: CAN CHANGES OF SUMMER 
♦CONDITIONS IN THE ATMOSPHERE 
*BE USED TO PREDICT CHANGES OF RAINFALL IN WINTER. 
*LET A,B,C (ATMOS) BE VARIABLES FOR 
*SUMMER CONDITIONS IN THE 
♦ATMOSPHERE AND D,E,F (RAIN) BE 
♦VARIABLES FOR RAINFALL IN 
♦WINTER 
*. 

DATA ONE; 
INPUTABCDEF; 
CARDS; 
{DATA} 
RUN; 
DATA TWO; 
PROC CANCORR DATA = ONE ALL; 
VARABC; 
WITH D E F; 
RUN; 

e. Output of SAS CANCORR procedure. 

Squared 
Canonical Canonical 
Correlation Correlation Pr>F 

1 0.795608 0.632992 0.0635 
2 0.200556 0.040223 0.9491 
3 0.072570 0.00566 0.7748 

Standardized Canonical Coefficients for the ATMOS (Dependent Variable) 

ATMOS 1 ATMOS2 ATMOS3 
A -0.7754 -1.8844 -0.1910 
B 1.5793 -1.1806 0.5060 
C -0.0591 -.2311 1.0508 

Standardized Canonical Coefficients for the Rain (Independent Variable) 

RAIN1 RAIN2 RAIN3 
D -0.3495 -0.3755 -1.2966 
E -1.0540 0.1235 1.2368 
F 0.7164 1.0622 -0.4188 

49 



CHAPTER 17 

Standardized Variance of the ATMOS (Dependent Variable) Canonical Redundancy Analysis 

Their Own 
Canonical 
Variables 

The Opposite 
Canonical 
Variables 

1 
2 
3 

Proportion 
0.4508 
0.2470 
0.3022 

Proportion 
0.2854 
0.0099 
0.0016 

Standardized Variance of the Rain (Independent Variable) Canonical Redundancy Analysis 

Their Own 
Canonical 
Variables 

The Opposite 
Canonical 
Variables 

1 
2 
3 

Proportion 
0.4081 
0.4345 
0.1574 

Proportion 
0.2584 
0.0175 
0.0008 

f. Explanation of SAS Output. 

(1) Three canonical functions are printed out, 
(ATMOS1, RAIN1), (ATMOS2, RAIN2), and 
(ATMOS3, RAIN3). ATMOS 1, ATMOS2, and 
ATMOS 3 are canonical variables for dependent 
variables (A,B,C) and RAIN1, RAIN2, and RAIN3 
are canonical variables for independent variables 
(D,E,F). In the output the maximum number of 
canonical functions to be initially considered is three 
because three is the number of variables in the smallest 
data set, three independent or three dependent 
variables. 

(2) The canonical correlation indicates the strength of 
the relationship between pairs of canonical variables. 
When squared, the canonical correlation represents 
the amount of variance in one canonical variable that 
is accounted for by the other canonical variable. The 
most common practice is to analyze only those 
canonical functions whose canonical correlation 
coefficients are statistically significant beyond some 
level, typically .10 or less (Pr > F). 

(3) Even though the canonical correlation for canonical 
function one is significant, further analysis involving 

redundancy index must be undertaken to determine 
the amount of the dependent variable variance that is 
shared with the independent variables. 

(4) The redundancy index for the first pair of canonical 
variables (canonical function one) indicates that 28.54 
percent of the variance in the dependent variables has 
been explained by the canonical variable for the 
independent variable set. The redundancy index also 
indicates that 25.84 percent of the variance in the 
independent variables has been explained by the 
canonical variable for the dependent variable set. 

(5) The redundancy index is the essential evaluator in 
the SAS canonical correlation output. If the 
redundancy index is acceptable, then look at the 
canonical weights and canonical loadings. The 
question arises as to what is the minimum acceptable 
redundancy index to justify the interpretation of 
canonical functions? No generally accepted guidelines 
have been established. The analyst would have to judge 
each canonical function in light of its practical 
significance to the research problem being 
investigated. A test for the significance of the 
redundancy index has been developed, although it has 
not been widely utilized. Canonical loadings have not 
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been printed out, but they enable us to know the 
correlation between the observed predictor criterion 
variable and the canonical variables. Canonical 
weights or canonical coefficients have been printed 
out. The canonical weights (sign and magnitude of 
the number assigned to each variable) are used in 
computing the linear combinations for canonical 
functions. 

(6) The redundancy index of the SAS output enables 
us to know if we will have a good predictor or 
regression equation. SAS CANCORR procedure 
provides multiple regression analysis options to aid 
in interpreting the canonical correlation analysis. You 
can examine the linear regression for each criterion 
variable on the opposite set of predictor variables. 
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CONSOLIDATED STATISTICAL BACKGROUND PAPERS 

Chapter 18 

COEFFICIENT OF DETERMINATION 

18.1 Introduction. In statistics, the term coefficient 
of determination is frequently used and often 
misapplied. This chapter presents a basic definition 
of this coefficient, and discusses some of the problems 
associated with its use. 

18.2 Background. 

a. The major uses of regression analysis are for 
estimation of parameters and means, and for prediction 
of new observations. The basic linear regression 
equation is: 

y =  bixi + b2x2 +■■■+ b„Xn + bo (1) 

where b0, hv ..., bn are the regression parameters; xr 

x2, ..., xn are the predictor variables, and y is the 
predictand. The coefficient of determination (r2 or 
R2), the square of the correlation coefficient, is usually 
interpreted as measure of the goodness of fit of a 
regression line to a set of data (It is common to use 
the notation r2 when referring to only two variables, 
and R2 when more than two variables are involved.). 
This value can be computed from 

R2 = 
Explained Variation 

Total Variation 

or 

R2  = 1 - 
Error Sum of Squares 

Total Sum of Squares. 

(2) 

(3) 

If the explained variation is equal to the total variation, 
R2 = 1 and there is a perfect fit (all the observations 
fall on the regression line). When R2 = 0, there is no 
linear association between the predictors and the 
predictand variables. Figures 18-1 and 18-2 
graphically depict these two extreme cases. In 
practice, R2 is not likely to be exactly 0 or 1, but will 
lie somewhere in between. The closer its value to 
one, the greater the degree of linear association 
between the x. predictors and the y predictand. 

b. The value of R2 tends to be affected by the spacing 
of the x observations. Values of R2 will tend to be 
higher when the x observations in a sample are highly 
spaced. R2 can also be made large by including a 
large number of independent variables in the model. 
It has therefore been suggested that a modified measure 
be used, which adjusts for the number of independent 
variables in the regression model. This measure, 
referred to as the adjusted coefficient of multiple 
determination (see equation below), may actually 
become smaller when another predictor is introduced 
into the regression equation. The unadjusted R2 can 
never decrease. 

Adjusted R2  = 1 - (1 - R2)(~-i) 1 (4) 
n 

where: 

n = sample size 

p = number of parameters in model. 

Figure 18-1. Example of regression line for the case 
when r2 = 1. 

Figure 18-2. Example of regression line for the case 
when r2 = 0. 
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c. In regression equations containing multiple 
variables, multicollinearity may be a problem. 
Multicollinearity refers to the case in which two or 
more variables in the regression model are highly 
correlated, thereby making it difficult to isolate the 
individual effects on the dependent variable. (An 
example might be a model that uses both sea level 
pressure and altimeter settings as independent 
variables). With multicollinearity, the estimated 
regression coefficients may be statistically 
insignificant (and even have the wrong sign!) even 
though the R2 is high. The SAS REG procedure has 
a few techniques available to test for multicollinearity. 

One way is to examine the variance inflation factor 
(VIF). If the highest VIF value is larger than 10, one 
can conclude that multicollinearity is a problem. 

18.3 Conclusion. No single measure is an adequate 
indication of the usefulness of a regression equation. 
The R2 measure is simply a descriptive measure of 
the degree of linear association between x. and y 
variables in the sample of observations. However, 
problems associated with multicollinearity and a large 
number of predictor variables may cause an analyst 
to overstate the value of a particular regression model. 

54 



CONSOLIDATED STATISTICAL BACKGROUND PAPERS 

Chapter 19 

R2 FOR PREDICTION 

19.1 Introduction. In Regression Analysis (SAS 
REG procedure), the coefficient of determination (R2) 
is a measure of the fit of the regression line. The R2 

for prediction is a different measure than R2 but is 
often compared with R2. This chapter will focus on 
definitions of R2, R2 for prediction, and how to 
interpret the R2 for prediction. 

19.2 Discussion. 

a. Definition of R2 and R2 for prediction. 

(1) R2 represents the proportion of variation in 
the response data that is explained by the 
regression model. The R2 can range from 0 to 1. 
The upper bound of R2 or 1 is achieved when the 
fit of the model to the data is perfect; i.e., all 
residuals (differences between observed values 
and predicted values) are zero. 

(2) R2 for prediction can be compared to R2 as 
an aid in determining whether overly influential 
observations are present. Therefore, the extent 
to which R2 for prediction falls below R2 provides 
a rough indication of the presence of influential 
observations. 

b. Formula for R2: 

Eft - yf 
R2 = ^r = 1 - 

SSE 

SSTY 

where: 

y\  = predicted response 

y;  = observed response 

y = mean of observed responses 

SSE = Error Sum of Squares 

SSTY = Total Sum of Squares. 

c. Formula for R2 for prediction: 

PRESS 
R2 for prediction = 1 - —n  

Xfo - yf 

where: 

PRESS(prediction sums of squares ) = jjT 
1 - h i J 

e. are the errors and: 
i 

_   1          (xt - x? 
hi =  - + —  

n   5>, - xf 
i=l 

d. Data Example. 

Predicted 
Y 

OBS X Y Value 

1 1 5 5.6 
2 2 8 7.2 
3 3 9 8.8 
4 4 10 10.4 

PRESS 
Residuals 

Error Error2 Squared 

-0.6 0.36 4.000 
0.8 0.64 1.306 
0.2 0.04 0.081 

-0.4 0.16 1.778 
1.20 7.165 
SSE PRESS 

Statistic 
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e. SAS program to calculate R2 and R2 for prediction. 

* READ m DATA WHERE Y IS 
* VARIABLE WE WISH TO 
* PREDICT (THE DEPENDENT 
* VARIABLE) AND X IS THE 
* PREDICTOR VARIABLE (INDEPENDENT 
* VARIABLE). 
*■ 

DATA ONE; 
INPUT XY; 
CARDS; 

1 5 
2 8 
3 9 
4 10 

RUN; 
* 
* SAS REGRESSION PROCEDURE 
*• 

DATA TWO; 
PROC REG DATA=ONE; 
MODEL Y=X /R NOPRINT; 
OUTPUT OUT=TWO PRESS=PRESS 
RESIDUAL=ERR; 
RUN; 
* 

* CREATE ERROR SQUARE VARIABLE AND 
PRESS VARIABLE 
*• 

DATA THREE; 
SET TWO; 
ERRSQ = ERR*ERR; 
PRESS=PRESS*PRESS; 
RUN; 
* 

*SAS UNTVARIATE PROCEDURE 
♦OUTPUTS PRESS STATISTIC, 

*SSTY, AND SSE. 
*• 

DATA FOUR; 
SET THREE; 
PROC UNTVARIATE DATA=THREE NOPRINT; 
VARY ERRSQ PRESS; 
OUTPUT OUT = FOUR 
CSS=SSTY SUM=SUMY SSE PRESS; 
RUN; 
* 

* RSQPRED AND RSQ VARIABLES 

DATA FTVE; 
SET FOUR; 
RSQPRED = 1 - PRESS/ SSTY; 
RSQ    = 1 - SSE/ SSTY; 
RUN; 

f.  Output. 

R2 (RSQ) = 0.914 
R2 for prediction (RSQPRED) = 0.488 

19.3 Summary. The value ofR2 for prediction, 0.488, 
is less than the R2 value, 0.914. The extent to which 
R2 for prediction falls below R2 provides a rough 
indication of the presence of influential observations. 
A comparison of R2 for prediction with R2 yields the 
same information as a comparison of the PRESS 
statistic with the error sum of squares, SSE. The sum 
of squared errors, SSE, and the sum of the PRESS 
residuals squared can be compared as an aid in 
determining if influential observations are present. 
The difference between the PRESS residuals squared 
and the squared error is largest when influential 
observations are present (see observations 1 and 4). 
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Chapter 20 

LINEAR REGRESSION 

20.1 Introduction. The SAS REG procedure builds 
and analyzes multiple regression equations, producing 
a wide range of descriptive statistics. This section 
provides explanations of some of the statistics 
available in PROC REG using several examples, 
beginning with the sample output shown in Table 20-1. 

20.2 Discussion. Multiple regression equations take 
the form shown below. 

y = b0 + blXl + b2x2+... + bnxn 

where "y" is the dependent response variable, the x's 
are the independent variables used as predictors, bo is 
the y-intercept, and the other b's are the regression 
coefficients. Table 20-1 shows the results of a 
regression equation used to relate "growth" (the 
dependent variable) to a "dose" of a given drug 
(DOSE), and the square of the dose (DOSESQ). Using 
the parameter estimates shown in Table 20-1, the 
regression model for this example is: 

GROWTH = 35.657 + 5.263 (DOSE) -0.128 (DOSESQ) 

Example 1. Below is the SAS routine used to produce 
the output in Tables la and lb. 

DATADATA1; 
INPUT GROWTH DOSE; 
DOSESQ=DOSE**2; 
CARDS; 

(data) 

PROC REG DATA = DATA1; 
MODEL GROWTH = DOSE DOSESQ / 
P R CLI CLM; 
RUN; 

In this SAS routine, "P," "R," "CLI," and "CLM" are 
four of the many options available in PROC REG. 
The "R" option requests an analysis of the residuals. 
The standard errors of the predicted values will be 

printed, along with the residuals. The studentized 
residual, which is the residual divided by its standard 
error, is both printed and plotted. The "CLI" and 
"CLM" options request 95 percent prediction and 
confidence intervals for individual predicted values, 
and for predicted mean values. 

The statistics generated by the code shown in example 
one, as well as other statistics generated when different 
options are selected, are described more fully in the 
following text and examples. 

a. Dependent (or response) variable. This is the 
variable we try to predict using the regression equation. 
In example one the response variable is GROWTH. 

b. F value, Prob>F. These entries show the results of 
the F test used to check the hypothesis that all 
parameters are zero, a test of the overall significance 
of the regression. If the "Prob>F" value is greater 
than 0.05, then the hypothesis is probably true and 
the regression model is therefore of little value. 

c. Root MSE. This is an estimate of the standard 
deviation of the error term, also known as the standard 
error of the estimate. As the predictions become more 
precise, this value will become smaller. 

d. Dep. Mean. The sample mean of the dependent 
value. 

e. C.V. The coefficient of variation. This expresses 
the variation in unitless values (computed as 100 times 
the Root MSE, divided by the mean of the dependent 
variable). As a sample of observations becomes more 
stationary, the C.V. approaches zero. 

f. R2. The coefficient of determination. R2 measures 
the fit of a regression line to the sample data (R2 has 
values between zero and one). In example one, the 
R2 value of 0.9364 indicates that 93.64 percent of the 
variation in the dependent variable can be associated 
with the variation in the independent variables used. 
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g. Adjusted R2(ADJRSQ). The R2 value will always 
increase as additional predictor variables are added to 
a regression equation, even when the added predictors 
have no relation to the response variable. The adjusted 
R2 value eliminates this bias. The adjusted R2 will 
not automatically increase when new predictors are 
introduced, and may even decrease if the predictors 
do not improve the model (in fact, it may become 
negative). The adjusted R2 will always be smaller 
than R2, but the difference will be negligible if we use 
a large sample. 

h. Variables. These are the variables used to predict 
the dependent variable. In example one, the predictor 
variables are DOSE and DOSESQ, along with the y- 
intercept. 

i. Parameter Estimate. The parameter estimates show 
the value of the y-intercept and the regression 
coefficients. From the parameter estimates, it is 
possible to write the regression equation, as shown in 
Paragraph 2 above. 

j. Standard Error. The estimate of the standard 
deviation of the parameter estimate. The standard error 
for prediction is actually the standard error for the 
estimated mean, rather than the standard error of a 
single predicted value. An "OUTPUT" statement must 
be used to get both a standard error of the estimated 
mean and of a single predicted value. 

k. t test (T for HO: Parameter = 0), Prob > ITI. These 
two columns show the results of a t-test used to check 
the hypothesis that the regression coefficient is equal 
to zero. If the "Prob > ITI" value for this test is greater 
than 0.05, then the predictor variable being tested adds 
little to the model and should be removed. 

1. The large box in the bottom half of the SAS output 
in Table 1 shows the predicted values at each data 
point, the upper and lower 95 percent confidence and 
prediction intervals for the mean and predicted values, 
and information on the residuals (actual minus 
predicted values). 

m. Student Residual. These are obtained by dividing 
the residuals by the standard errors, with the result 
following the student's t distribution. For large 
samples, student residuals larger than 2.5 are rare, thus 
it is possible to identify unusually large residuals. 

n. Cook's D. This statistic is useful in identifying 
outliers that may have a significant impact on the least 
squares regression. Cook's D provides an influence 
measure by calculating the change to the estimate that 
results from deleting each observation. A Cook's D 
value greater than one indicates an outlying influential 
observation. 

o. Sum of Residuals. The sum of the residuals should 
be zero. If a different value is obtained, round off errors 
are most likely responsible. 

p. Sum of Squared Residuals. Excluding round off 
errors, this should equal the Error Sum of Squares 
from the top box. 

q. Predicted Residual Sum of Squares (PRESS). The 
PRESS statistic is useful for detecting the existence 
of outliers. If the PRESS is considerably larger than 
the residual sum of squares, an influential outlier may 
be present. 

Example 2. The code below describes how to invoke 
two other options which are available in the REG 
procedure. 

PROC REG; 
MODEL Y = X1X2 X3 X4/TOLVIF; 
RUN; 

u. VIFandTOL. The variance inflation factor (VIF) 
is useful in determining which predictor variables may 
be involved in multicollinearities (high intercorrelation 
among variables). The tolerance (TOL) is the 
reciprocal of the VIF. If multicollinearity is present 
the result can be instability of the regression 
coefficients and inflated confidence intervals around 
predicted values. Murphy and Katz (1985) 
recommend that the use of ridge regression be 
considered if the maximum VIF is greater than ten. 
Other statisticians recommend variable deletion be 
used to reduce multicollinearity. 

v. Mallow's Cp. This option, available with the 
RSQUARE model selection method, helps determine 
if the model is overfit or underfit. We should look for 
a Cp value that is about equal to the number of 
parameters in the regression model. 
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Example 3. 

PROC REG; 
MODEL Y = XI X2 X3 X4 / 
SELECTION = RSQUARE Cp; 
RUN; 

w. INFLUENCE and DW are two additional options 
that may be useful. The INFLUENCE option enables 
analysts to flag the influence of each observation on 
the regression model. Five statistics will be generated 
(hat matrix, RSTUDENT, COVRATIO, DFFITS, and 
DFBETAS). If all five statistics exceed a general cutoff 
value for an observation, then that observation should 
be investigated to determine why it was found to be 
so influential.   The DW option (Durbin-Watson 

statistic) can be used to test for serial correlation in 
the residuals. In general, one can assume that no serial 
correlation is present in the data if the DW statistic is 
between 1.5 and 2.5. If there is serial correlation then 
the R2 value will be erroneous. 

20.3 Conclusion. This section presents a description 
of some of the information available in the S AS REG 
procedure. Several additional options not shown in 
example one are also available within the REG 
procedure. Consult the SAS User's Guide for 
additional information on these and other options. In 
general, a good regression equation will have a large 
adjusted R2, a small root mean square error, small 
Mallow's Cp, and no evidence of multicollinearity. 

Table 20-1 a. Sample output from PROC REG (from SAS/STAT User's Guide, Volume 2). See example 1 for 
the code used to generate this output. 

The SAS System 

Model: MODEL1 
Dependent Variable: Growth 

Analysis of Variance 

Source DF 
Sum of                  Mean 
Squares               Square F Value Prob>F 

Model 
Error 
Total 

2 
7 
9 

665.70617           332.85309 
45.19383              6.45626 

710.90000 

51.555 0.0001 

RootMSE            2.54092              R-square             0.9364 
DepMean           82.10000             Adj R-aq             0.9183 
C.V.                      3.09491 

Parameter Estimates 

Variable DF 
Parameter             Standard 
Estimate                 Error 

T for HO: 
Parameter=0 Prob > ITI 

INTERCEP 
DOSE 
DOSESQ 

1 
1 
1 

35.657437           5.61792724 
5.262896           0.55802206 

-0.127674           0.01281135 

6.347 
9.431 
-9.966 

0.0004 
0.0001 
0.00001 
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Chapter 21 

MULTICOLLINEARITY 

21.1 Introduction. Multicollinearity exists when 
two or more independent variables are highly related 
to each other. The high correlation between 
independent variables can cause the computed 
estimates of regression coefficients to be unstable. This 
causes the results of the regression to be of limited 
usefulness. A number of meteorological variables are 
associated, thus the problem of multicollinearity is 
often encountered. 

21.2 Discussion. 

a. When independent variables are highly correlated, 
the estimated regression coefficients tend to vary 
widely from one sample to the next. As a result, only 
imprecise information about the individual regression 
coefficients may be obtained. Under severe 
multicollinearity, the regression coefficients may be 
subject to large round-off errors and large sampling 
variances. 

b. Just as intercorrelations between the independent 
variables tend to make the estimated regression 
coefficients imprecise (i.e., erratic from sample to 
sample), so do the coefficients of partial correlation 
between the dependent variable and each of the 
independent variables tend to become erratic from 
sample to sample. 

c. While it may be feasible in multiple regression to 
vary one independent variable and hold the other 
independent variables constant, it may not be possible 
in practice to do so for independent variables that are 
highly correlated. For example, in a regression model 
for predicting crop yield from amount of rainfall and 
hours of sunshine, the relation between the two 
independent variables makes it unrealistic to consider 
varying one while holding the other constant. 

d. Possible indicators of multicollinearity include: 

(1). Large changes in the estimated regression 
coefficients when a variable is added or deleted, or 
when observations are altered or deleted. 

(2). Important independent variables having 
nonsignificant results on their regression coefficients. 

(3). Estimated regression coefficients with an 
algebraic sign that is the opposite of that expected 
from theoretical considerations or prior experience. 

(4). Large coefficients of correlation between pairs 
of independent variables in the correlation matrix. 

(5). Wide confidence intervals for the regression 
coefficients representing important independent 
variables. 

e. Remedial measures for multicollinearity: 

(1). One of several independent variables may be 
dropped from the model in order to reduce 
multicollinearity and thereby reduce the standard 
errors of the estimated regression coefficients for the 
independent variables remaining in the model. 

(2). In polynomial regression models, expressing the 
independent variables in the form of deviations from 
the mean serves to reduce substantially the 
multicollinearity among the first-order, second-order, 
and higher-order terms. 

(3). Occasionally, it is possible to add some 
observations which break the pattern of 
multicollinearity (not always possible). 

(4). Ridge regression may be used to remedy 
multicollinearity by modifying the method of least 
squares to allow biased estimators of the regression 
coefficients. 

(5). Use regression with principal components where 
the independent variables are linear combinations of 
the original independent variables. 

(6). Use Bayesian regression where prior information 
about the regression coefficients is incorporated into 
the estimation procedure. 

21.3 Conclusion. There is no one definite way to 
deal with multicollinearity; opinions vary among 
statisticians. The easiest way to deal with it is to 
eliminate correlated variables. 
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Chapter 22 

RIDGE REGRESSION 

22.1 Introduction. Situations occasionally arise 
when it is necessary to use highly correlated 
independent variables in a regression equation, leading 
to problems with multicollinearity (correlation 
between independent variables). One solution to this 
problem is to use ridge regression. Ridge regression 
reduces the correlations among the independent 
variables, thereby making it possible to obtain more 
stable estimates of the regression coefficients. 

22.2 Discussion. 

a. When regression estimators are closely associated, 
the least squares estimators of the regression 
coefficients are subject to large standard errors. As a 
result, these least squares estimators may differ 
substantially from those obtained in other studies, even 
though both produce reasonable results. Ridge 
regression replaces the least squares estimators with 
biased estimators. Ridge regression tends to bias 
regression estimators toward zero. 

b. The following example illustrates the principle 
behind ridge regression. With two independent 
variable vectors (Xl and X2) and a dependent variable 
vector (Y) in a multiple linear regression equation, 
the ordinary standardized least squares coefficients are 
computed as shown below. 

*i = 
riY 

ti 
K = '2Y ri2rir 

'12 

where r1Y, r2y, andr12 are the Pearson product-moment 
correlations between X: and Y, X2 and Y; and X: and 
X2, respectively. The ridge estimators equations are: 

(     -       A 
'\Y 

K = 

'12 

(1   +   k) 
\ 

'12 

(1   +   k)J 

'2Y 

K = 

'12 
A 

(1 + k). 

2Y      f 

2 
V (1 + k) 

( \2 

'12 

\{1 + k). 

1 

(1 + W 

Notes:  1. The value of k, the ridge trace, is usually a 
number between 0 and 1. 
2. When k = 0, you obtain the ordinary least 
squares estimates. 
3. The value of k is obtained subjectively. 
When the estimators stabilize, the "proper" k 
value has been determined. 

22.3 Conclusion. Ridge regression is used only when 
highly correlated predictor variables must be used. 
Ridge regression techniques are controversial. 
Murphy and Katz state that if the variance inflation 
factors (VIF) of the predictors are large, then it is 
appropriate to consider ridge regression in order to 
minimize the effects of the predictor variable 
correlations, and develop a set of stable coefficients 
(Ridge regression is available in the SAS REG 
procedure, by specifying the ridge option.). 
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Chapter 23 

SAS ORTHOREG PROCEDURE 

23.1 Introduction.   The SAS REG and GLM 
procedures can be used to perform multiple linear 
regression 

y = b0+b1x1+b2x2+...+bnxn 

where y is the predicted response, xn are the predictor 
variables, and bn are the regression parameters. 
Multiple linear regression is an attempt to fit a straight 
line to the collected data. In meteorology, analysts 
often use predictor variables that are correlated in both 
space and time. When performing multiple linear 
regression with correlated variables, the user may 
obtain the following warning note in the SAS printout: 

Note: Model is not full rank. Least-square 
solutions for the parameters are not unique. Some 
statistics will be misleading. Parameters have been 
set to 0 since the variable are a linear combination 
of other variables. B means the parameter estimate 
is biased. 

Version 6 of SAS has a new regression procedure 
known as PROC ORTHOREG. This procedure can 
serve as a strategy to eliminate the warning note in 
the regression analysis. This section explains the 
reasons for the above warning message, and discusses 
how to correct the problem using PROC ORTHOREG. 

23.2 Background. 

a. PROC REG and PROC GLM have an option to 
calculate the parameters in a least squares linear 
equation (multiple linear regression). SAS uses matrix 
algebra to calculate the parameter estimates. In order 
to calculate the parameters of the multiple linear 
equation, an inverse of a matrix must be computed. 
If it is not computationally possible to carry out this 
matrix inversion, then the warning message stating 
the model is not full rank will appear. This indicates 
that there is a linear dependency between the predictor 
variables. If the inverse of a matrix cannot be carried 
out in the usual way, then the matrix is termed singular. 

b. The warning message indicates a problem known 
as collinearity. If only two predictors are involved, it 

is highly unlikely the warning message will appear. 
If there are more than three predictors, collinearity 
may be more likely. 

c. PROC REG and PROC GLM use a generalized 
inverse to compute parameter estimates. This may 
lead to erratic values for the estimates (wide 
fluctuations in the parameter estimates as predictors 
are added or removed from the regression equation) 
when there is a linear dependency between the 
predictor variables. The ORTHOREG procedure can 
prevent the occurrence of erratic parameter estimates. 

d. In some cases simple round-off errors can lead to 
collinearity. Consider the following set of equations: 

2x + y = 5 
2.000001x + 0.999999y = 5.000001 

There is a unique solution for x and y from this set of 
equations; however, a high degree of precision is 
required to obtain it. If precision in the sixth decimal 
place is lost, the second equation becomes 

2x + y = 5. 

Now the set of equations no longer has a unique 
solution. In this example, collinearity is due to 
numerical round-off. 

23.3 Example. 

a. The following example demonstrates the problems 
that can arise due to collinearity. Suppose we wish to 
develop a multiple linear regression model to forecast 
fog with a visibility of less than or equal to 5,000 
meters (a yes/no type model), 3 hours from the 
observation time. Potential predictors from the current 
observation include: temperature (TEMP), cosine and 
sine of the hour angle (CHH and SHH), cosine and 
sine of the wind direction (CWD and SWD), dew point 
depression (DDEP), wind speed (WSP), dew point 
(DEW), wind direction (WDIR), ceiling height (CIG), 
sea level pressure (SLP), altimeter setting (ALT), and 
visibility (VSBY). The SAS code to conduct this 
regression is shown on the next page. 
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DATA ONE; 
INFILE DATAIN MISSOVER; 
INPUT CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR CIG SLP ALT VSBY; 
PROC REG; 
MODEL VSBY=CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR CIG SLP ALT VSBY; 
RUN; 

A summary of the output from this procedure is displayed below. 

Note: Model is not full rank. Least-squares solutions for the parameters are not unique. Some statistics will be 
misleading. Parameter as dew has been set to 0 since the dew variable is a linear combination of the other 
variables. B means the parameter estimate is biased. 

DEW = -6.94 • INTERCEPT - 1.7E-09 • CHH + 1.33E-09 • SHH 

- 2.72E-09 • CWD - 1.55E-09 • SWD + 1.00 • TEMP 

-1.00 • DDEP + 1.92E-10 • WSP + 1.35E-11 • WDIR 

- 1.30E-13 • CIG + 1.82E-08 • SLP 

- 6.23E-08 • ALT + 2.83E-13 • VSBY 

PARAMETER ESTIMATES 

VARIABLES 

INTERCEPT 
CHH 
SHH 
CWD 
SWD 
TEMP 
DDEP 
WSP 
DEW 
WDIR 
CIG 
SLP 
ALT 
VSBY 

DEGREES PARAMETER 
OF FREEDOM ESTIMATES 

B 4.654 
B 0.014 
B -0.003 
B 0.009 
B -0.027 
B 0.003 
B 0.006 
B 0.001 
0 0 
B 0.0001 
B 0.000000493 
B -0.001642 
B 0.004078 
B 0.0000444 

b. Note that only the values B and 0 appear in the "degrees of freedom" column. Any variable which is a linear 
combination of other predictor variables (such as DEW) is denoted by 0. Other variables are flagged with a B, 
for "biased". 
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c. Now we run the same example with the SAS ORTHOREG procedure. The SAS program is shown below. 

DATA ONE; 
INFILE DATAIN MISSOVER; 
INPUT CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR CIG SLP ALT VSBY; 
PROC ORTHOREG; 
MODEL VSBY= CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR CIG 
SLP ALT VSBY; 
RUN; 

A summary of the output from this SAS ORTHOREG procedure is shown below. 

VARIABLES 

INTERCEPT 

CHH 

SHH 

CWD 

SWD 

TEMP 

DDEP 

WSP 

DEW 

WDIR 

CIG 

SLP 

ALT 

VSBY 

PARAMETER ESTIMATES 

DEGREES 
OF FREEDOM 

PARAMETER 
ESTIMATES 

4.654 

0.014 

-0.003 

0.009 

-0.027 

0.003 

0.006 

0.001 

0 

0.0001 

0.000000493 

-0.001642 

0.004078 

0.0000444 
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d. It turns out that the fog example had only a mild 
case of collinearity, so the ORTHOREG procedure 
generated the same parameter estimates as the REG 
procedure. This won't always be the case. 

23.4 Conclusion. There are different degrees of 
collinearity. In a mild case of collinearity, an easy 
approach is to simply eliminate the variables identified 

as a linear combination of other variables (in this case, 
DEW). In a severe case of collinearity, the SAS 
ORTHOREG procedure can be used. A comparison 
can be made between the results of the two procedures 
to determine the stability of the parameter estimates. 
The real test of a linear equation is its performance on 
independent data. 
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Chapter 24 

THE SAS/ETS AUTOREG PROCEDURE 

24.1 Introduction. One of the assumptions in linear 
regression is that the residuals are independent (a 
residual is the difference between an observed and a 
predicted value). Since meteorological data are often 
in time series form, serial correlations (also called 
autocorrelations) between data points frequently exist. 
This chapter describes the SAS AUTOREG 
procedure, which is a regression technique that is 
appropriate when serial correlations exist within the 
data. 

24.2 Discussion. 

a. Serial correlation between data points can be 
detected by studying the residual plot from a linear 
regression. Figures 24-1 through 24-3 show examples 
of how the residual plots may look for cases of 
positive, negative, or no serial correlation. Positive 
serial correlation is characterized by unusually large 
clusters of positive and negative residuals as in Figure 
24-1. In positive serial correlation there is more of a 
smooth pattern in the residuals. In Figure 24-2, 
negative serial correlation is illustrated by rapid 
switching between positive and negative residuals. If 
no serial correlation exists, a more random pattern of 
residuals will occur as in Figure 24-3. Serial 
correlation can also be detected by using the Durbin- 
Watson statistic (provided by PROC AUTOREG). 
In general, a D-W statistic between 1.5 and 2.5 (one 
can look at a D-W table for exact values) indicates no 
significant serial correlation exists. If the value is 
less than 1.5, positive serial correlation likely exists. 
If the D-W value is greater than 2.5 there is negative 
serial correlation. The further the value is from the 
range 1.5 and 2.5, the more serious the problem. 

Residual 

Time 

Residual 

Time 

Figure 24-2. Negative Serial 
Correlation 

Residual 

Figure 24-1. Positive Serial 
Correlation 

Time 

Figure 24-3. No Serial 
Correlation 

b. The AUTOREG procedure corrects for serial 
correlation by fitting a regression equation to the 
residual pattern. To see how AUTOREG differs from 
simple linear regression, let's compare the two. A 
simple linear regression equation has the form 

y,  = a + ßxt + e,. 

In this equation, e. represents the model error. It is 
assumed that the sum of the errors equals zero, and 
that the errors are normally distributed and 
independent. These assumptions are often violated. 
With meteorological data, the error terms are often 
correlated, as mentioned previously. In this case, the 
autoregressive model can be used. The equation for 
this has the form 

yt = a + ßxt + e, 

e, =  -<l>£t-i + error. 

In this case the error term is time-dependent. The 
symbol / represents an autoregressive parameter 
showing the final estimate of the autocorrelation at 
lag one. 
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24.3 Example. The following example may help clarify the AUTOREG procedure. In this example, the 
dependent variable (VSBY1) is a fog/no fog decision. The predictor variable is the dew point depression 
(DEWPTDE1). 

Table 24-1. SAS AUTOREG procedure. 

DEPENDENT VARIABLE = VSBY1 

SAS 

AUTOREG PROCEDURE 

ORDINARY LEAST SQUARES ESTIMATES 

SSE 
MSE 
SBC 
Reg RSQ 
D-W 

1376.248 
0.055881 
-1130.66 

0.1020 
0.3069 

DFE 
ROOT MSE 
AIC 
Total Rsq 

24628 
0.236 

-1146.88 
0.1020 

Variable DF 

INTERCPT 1 
DEWPTDE1 1 

B Value 

0.69719 
0.10178 

Std Error      t Ratio 

0.00471 
0.00192 

147.948 
52.884 

Prob 

0.0001 
0.0001 

Lag Covanance 
0 0.0558769 
1 0.0473108 

Lag 
1 

Correlation 
1.000000 
0.846697 

Estimates of Autocorrelations from 0.0± 1.0 

-1 9 765432101234567891 
I ******************** 
*****************       j 

Preliminary MSE=  0.01581902 

Estimates of the Autoregressive Parameters 
Coefficient Std Error t Ratio 
-0.84669665 0.00339053        -249.723831 

Unconditional Least Squares Estimates 

SSE 
MSE 
SBC 
Reg RSQ 
D-W 

Variable DF  B Value 

INTERCPT 
DEWPTDE1 
A(l) 

0.89701 
0.01566 
-0.8719 

356.663 
0.01448 
-34375.6 
0.0031 

2.1628 

Std Error 

0.00728 
0.00178 
0.00313 

DFE 24627 
Root MSE 0.120 
AIC -34400 
Total Rsq 0.7673 

t Ratio 

123.165 
8.767 

-278.87 

Prob 

0.0001 
0.0001 
0.0001 

a. The AUTOREG procedure first fits a simple linear 
regression to the data. As seen in the output, the 
regression model is: y = 0.697 + 0.108x. The D-W 
statistic for this model is 0.3069, indicating a positive 
serial correlation. Note: R2 for this model is only 
0.102. 

b. In the second part of the AUTOREG printout, the 
procedure fits an autoregressive model to the error 
term. The model built by the AUTOREG procedure 
is: y = 0.897 + 0.016x - .872 ZLAG1 (predicted y - 
actual y). The D-W statistic is 2.163, suggesting no 
serial correlation exists, and the R2 has been increased 
to 0.767. 
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Chapter 25 

FITTING A NONLINEAR MODEL 

25.1 Introduction. Can wind speed be used to predict 
the hour at which fog will dissipate? How does cloud 
cover affect the surface temperature? How does a 
decrease in dew point temperature affect the formation 
of clouds? These are questions about the relationships 
between pairs of variables: wind speed and fog 
dissipation, cloud cover and surface temperature, and 
dew point and cloud cover. As one variable increases, 
the other variable increases or decreases. Regression 
analysis uses equations to describe how one variable 
is related to another variable or group of variables 
(Schlotzhauer and Littel, 1987). If the relationship is 
linear, the SAS REG procedure can be used to fit a 
linear regression model to data. However, frequently 
the relationship between weather parameters is not 
well represented by a straight line. In such cases, an 
analyst must fit another type of model to the data (such 
as the cumulative Weibull distribution model that is 
used to model ceiling and visibility distributions). This 
chapter outlines SAS procedures for fitting nonlinear 
models. 

25.2 Discussion. 

a. When we say that a model is linear, we really mean 
that a straight-line relation exists between the model 
variables. For example, a straight-line relation 
between two variables can be summarized with the 
equation: 

bo + bix + e. (1) 

This equation says that the variable, y, is a function of 
the variable, x. In addition, the straight line is defined 
by an intercept parameter, b0, and a slope parameter, 
br Also, there is some error in the data, e, since the 
same x value doesn't always give the same y value. 
You measure a sample and use the sample to estimate 
a straight line. 

b. Similarly, we say a model is nonlinear if the relation 
between the model variables is best depicted by a 
curve. For example, the quadratic regression model 

is the simplest and most frequently used nonlinear 
regression model. It may be represented by: 

y =  bo + bix + bix2 + £■ (2) 

This is just a special case of the general linear model 
since a quadratic regression is still linear in the model 
parameters, bn. Another example of a nonlinear model 
is the cumulative Weibull, given below: 

y = 1 J-a*b) (3) 

where y and x are data variables and a and b are the 
parameters to be estimated. The cumulative Weibull 
model is not a special case of the general linear 
regression model, but is known as an intrinsically 
linear model (Draper and Smith, 1981). An 
intrinsically linear model is a nonlinear model that 
can be made linear by a transformation of the model 
parameters. 

c. The SAS REG procedure, which uses a least squares 
regression approach, can be used to estimate the model 
parameters of linear models. However, when the 
model parameters are nonlinear, the parameter 
estimates generally can no longer be obtained so easily. 
Complicated iterative methods are necessary (Afifi and 
Clark, 1984). The SAS/STAT User's Guide contains 
the SAS NLIN procedure which can be used to 
estimate the model parameters of nonlinear models. 
The problem with PROC NLIN is that instead of only 
specifying a list of regressor variables, you also have 
to specify the derivatives of the model, with respect 
to the parameters, when using computational iterative 
methods (Gauss, Marquardt, Newton, Gradient). 
According to Bevington and Robinson (1992), the 
Marquardt method is a winner for finding parameter 
fits most directly and efficiently. The Marquardt 
method is useful when the parameter estimates are 
highly correlated. The only derivative-free method 
used by the NLIN procedure is the secant iterative 
method. 
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d. SYSNLIN and MODEL procedures contained in 
the SAS/ETS software package may be used to 
estimate nonlinear model parameters. The advantage 
of the SYSNLIN and MODEL procedures is that the 
analyst does not have to specify a derivative for the 
various computational methods used by the procedure 
(the default Gauss method, and alternate Marquardt 
method). In normal practice, first run the SYSNLIN 
and MODEL procedures using the default starting 
values. This works in many cases. If the parameter 
estimates do not converge, rerun the procedures using 
the estimated parameter estimates. Convergence and 
the rate of convergence may depend on the choice of 
the starting values for the parameter estimates. 

25.3 Examples. 

a. Sample SYSNLIN program: The following SAS 
SYSNLIN code, calculates the parameters (A and B) 
in a cumulative Weibull distribution equation. The 
output file is called "TWO" in this example, while Y 
is the cumulative Weibull distribution function of the 
visibility (VSBY). 

DATA ONE; 
INPUT Y VSBY; 
CARDS 
0.124 0.5 
0.243 1.0 
0.352 2.0 
0.506 3.0 
0.642 4.0 
0.662 5.0 
0.761 6.0 
RUN; 

PROC SYSNLIN METHOD = MARQUARDT 
OUTACTUAL OUTPREDICT OUTRESID 
OUT = TWO; 
Y = 1 - EXP (-A * VSBY ** B); 
PARAMETERS A B; 
ENDOY; 
EXO VSBY; 
RUN; 

b. Sample PROC MODEL program: The SAS code 
below, for the SAS MODEL procedure, calculates the 
parameters (A and B) in a cumulative Weibull 
distribution equation. The parameters and variables 
are the same as in the previous example. The PROC 
MODEL code will produce the same output generated 
by the PROC SYSNLIN code above. 

DATA ONE; 
INPUT Y VSBY; 
CARDS; 
0.124      0.5 
0.243      1.0 
0.352      2.0 
0.506      3.0 
0.642      4.0 
0.662      5.0 
0.761       6.0 
RUN; 
PROC MODEL METHOD = MARQUARDT; 
PARMS A B; 
ENDOY; 
EXO VSBY; 
Y = 1 - EXP(-A * VSBY ** B); 
FIT Y/OUTACTUAL OUTPREDICT OUTRESID 
OUT=TWO; 
RUN; 
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c. Below is an example of the SAS output generated by the previous procedures. 

SYSNLIN Procedure 
OLS Estimation 

Nonlinear OLS Summary of Residual Errors 

DF DF 
Equation Model Error          SSE MSE Root MSE R-Square Adj R-Sq 

ACTUAL 2 5            0.00339 .0006772 0.02602 0.9900 0.9880 

Nonlinear OLS Parameter Estimates 
Approx. e-p) Approx. 

Parameter Estimate StdErr Ratio Prob>ITI 
A 0.249978 0.02000 12.50 0.0001 
B 0.955560 0.05926 16.13 0.001 

OBS _ESTYPE_ _TYPE_ _WEIGHT_ Y VSBY 

1 OLS ACTUAL 0.12400 0.5 
2 OLS PREDICT 0.12094 0.5 
3 OLS RESIDUAL 0.00306 0.5 
4 OLS ACTUAL 0.24300 1.0 
5 OLS PREDICT 0.22118 1.0 
6 OLS RESIDUAL 0.02182 1.0 
7 OLS ACTUAL 0.35200 2.0 
8 OLS PREDICT 0.38417 2.0 
9 OLS RESIDUAL -0.03217 2.0 
10 OLS ACTUAL 0.50600 3.0 
11 OLS PREDICT 0.51042 3.0 
12 OLS RESIDUAL 0.00442 3.0 
13 OLS ACTUAL 0.64200 4.0 
14 OLS PREDICT 0.60944 4.0 
15 OLS RESIDUAL 0.03256 4.0 
16 OLS ACTUAL 0.66200 5.0 
17 OLS PREDICT 0.68765 5.0 
18 OLS RESIDUAL -0.02565 5.0 
19 OLS ACTUAL 0.76100 6.0 
20 OLS PREDICT 0.74969 6.0 
21 OLS RESIDUAL 0.01131 6.0 
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Chapter 26 

DISCRIMINANT ANALYSIS 

26.1 Introduction. Discriminant analysis is a 
statistical technique that classifies individual 
observations into groups, and can be used to provide 
estimates of event probabilities. The idea was 
conceived in 1936 by R. A. Fisher, but it was Miller 
(1962) who demonstrated that discriminant analysis 
could be useful in weather forecasting. These 
techniques are computationally intensive. High speed 
computers and the availability of high-level 
programming languages such as SAS make 
discriminant analysis a powerful and simple technique 
for analyzing data and developing forecast models. 
This chapter outlines some of the basic principles of 
discriminant analysis, and provides an example of its 
use. 

26.2 Discussion. 

a. To illustrate the basic principles of discriminate 
analysis, consider a simple forecast model consisting 
of two predictors (Xt and X2). On a conventional 
Cartesian plot (shown above), a closed circle will be 
plotted for the observed value at each of the predictors 
when fog is not subsequently observed at the 
verification hour; an open circle will be plotted when 
fog is observed. After all the data is plotted, a line 
that best separates the two categories is drawn. This 
line, referred to as the "discriminant," serves as the 
basic forecast model. Subsequent observations of Xj 
and X2 would then be plotted to obtain a forecast. A 
forecast of "fog" or "no fog" is based upon which 
side of the discriminant the point lies. 

0 ° °c 
■ 0 o o   o   o o o V o o o 

b. The SAS/STAT user's guide contains a number of 
different types of discriminant analysis, which can 
basically be divided into parametric and a non- 
parametric forms. There are a number of different 
subgroups within each form. Parametric discriminant 
analysis is connected with assumptions about the 
statistical distribution of the data, while the 
nonparametric form can be used without making any 
assumptions about the distribution of the data. The 
SAS DISCRIM procedure has the capability of doing 
Miller's strategy, but it is certainly more complicated 
and experimental than parametric forms. The basic 
parametric form, linear discriminant analysis, is the 
only form in which SAS will provide information that 
can be used to generate an equation to calculate 
probabilities. 

c. Several assumptions are required for linear 
discriminant analysis, and these assumptions are 
usually violated. Klecka (1980) made an interesting 
statement about the violation of these assumptions in 
discriminant analysis. If the model performs well, 
the violation of the assumptions is not harmful. 
Usually attempts to transform the data or use 
alternative forms provide only marginal 
improvements. 

d. Linear discriminant analysis should be attempted 
first, before trying more complex forms (such as 
quadratic discriminant analysis or one of the 
nonparametric forms). Any number of variables can 
be used. One variable is defined which indicates the 
prediction class (i.e., the occurrence or non-occurrence 
of the variable of interest). For a fog forecast model, 
the occurrence of fog could be indicated by setting a 
variable called FOG equal to 1. When no fog occurs 
this variable has a value of 0 (but we are not restricted 
to only 2 classes). The model will provide a 
discriminant function, which is the linear 
combinations of the predictor variables which will best 
discriminate between the defined classes. An example 
of a forecast model using linear discriminant analysis 
is described in Coffin and Warren (1991). 

Figure 26-1. Cartesian plot of a forecast model. 
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e. The SAS procedure DISCRIM generates a 
classification matrix containing numbers that reveal 
the predictive ability of the discriminant function. The 
sum of the numbers along the left diagonal (running 
from the upper left to the lower right) represent the 
number of correct observations, while the sum of the 
numbers along the opposite diagonal are the incorrect 
classifications. 

f. To properly evaluate the value of the discriminant 
function as a forecasting model, a classification matrix 
must be computed using independent data. This data 

must not have been used in developing the 
discriminant function. Usually it is best to simply 
withhold 1 or 2 years' worth of data to use as an 
independent data set. The Heidke Skill Score can be 
used to evaluate the skill of the forecast model. 

26.3 Example. 

a. Below is a simple example showing how to perform 
discriminant analysis using SAS. The example uses 
dew point depression and wind direction to predict 
the occurrence of fog 3 hours from the observation 
time. 

where: 

DATA ONE; 
INFILE DATAIN MISSOVER; 
INPUT YY MM DD HH DDEP WDIR VSB Y; 
PROC DISCRIM DATA = ONE POOL = YES LIST OUT = TWO; 
CLASS VSBY; 
VAR DDEP WDIR; 
RUN; 

YY=Year 
MM = Month 
DD = Day 
HH = Hour 
DDEP = Dew point depression 
WDIR = Wind Direction 
VSBY = Visibility (1 = fog / 0 = no fog) 

Note: The option POOL = YES is necessary in order to obtain linear discriminant functions. The option LIST 
gives'event probabilities for each individual observation. The option OUT=TWO stores the calibration information 
in a SAS data set named TWO, which you will need to test the discriminant function on an independent data set. 
The required CLASS statement defines the group variable. 
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b. The output from the previous SAS statements (shown below) contains fog probabilities for all the individual 
observations, a classification matrix, and a linearized discriminant function for each group (fog / no fog). 

Table 26-1. Classification matrix 

OBSERVED FORECAST 

FOG NO FOG TOTAL 

MISSING 1,123 312 1,435 

FOG 5,351 
89.57 % 

623 
10.43 % 

5,974 

NO FOG 8,962 
23.39 % 

29361 
76.61 % 

38,323 

TOTAL 15,436 30,296 45,732 

Table 26-2. Linearized discriminant function 

Fog No Fog 

CONSTANT -0.46349 -2.82504 

DDEP 0.04727 0.25568 

WDIR 0.00711 0.01311 

c. Next we provide the SAS code for taking the 
calibration results of the previous DISCRIM procedure 
and testing the model on an independent set of data: 

TESTCLASS statements represent the grouping 
variables. 

d. In the output, two sets of coefficients are provided: 
one for FOG and one for NO FOG (in general we can 
call them Class A and Class B). The equations are 
then set up in the following manner. The classification 
matrices obtained from historical and independent data 
will enable the analyst to learn how the forecasting 
model is performing. In order to implement the model 
on future data, the analyst will need to set up the 
equations that provide probability estimates. 

A =  C, A0 X CM Xt 

PROC DISCRIM DATA = TWO TESTDATA 
= TEST TESTLIST; 
CLASS VSBY; 
TESTCLASS VSBY; 
VAR WDIR DDEP; 
RUN; 

DATA = TWO represents the calibration information 
from the previous strategy. The TESTDATA option 
represents the SAS DATASET containing the 
independent data (in this case it is named TEST). The 
TESTLIST option generates group probabilities for 
all the independent data.     The CLASS and 

B =   CBO +   7, CBJ XJ 
i=l 

P(A) = 
txp(B-A) + 1 

where CA0 and CB0 are the constants for class A and 
B, respectively; the coefficients for the i th predictor 
variable is C^ and CBi; and the ith predictor variable 
has a value of X.. P(A) represents the probability of 
class A occurring. N is the total number of variables. 
Using the example given above, the probability of fog 
is computed as shown on the next page. 
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FOG = (0.00711 • WDIR) + (0.04727 • DDEP) - 0.046349 

NO FOG = (0.01311 • WDIR) + (0.25568 • DDEP) - 2.82504 

1 
PROB OF FOG = 

exp(NOFOG - FOG) + 1 

Thus for a wind direction of 140 degrees and a dew 
point depression of 1 degree: 

FOG = 0.99632 

NO FOG =  -0.73396 

PROB OF FOG = 0.85 

In this case, the probability of fog is 85 percent. 
Evaluation of the skill of the model must be done 
with an independent dataset. For further details on 
PROC DISCRIM refer to the SAS/STAT User's 
Guide, Page 761. 

e. The analyst may be interested in knowing how the 
model is discriminating between fog and no fog. In 
the case of linear discriminant analysis, this 
information can be obtained by finding the equation 
of the linear surface for which the probability of both 
classes is exactly 50 percent. (For two predictors this 
surface is a line; for three predictors, a plane; for more 
than three predictors it is a multidimensional surface 

referred to as a hyperplane). This equation is known 
as the Fisher discriminant function. For the two- 
dimensional case it is given by (Afifi and Clark, 1984): 

AXi + /2X2  = k 

where / and f2 are coefficients, X{ and X2 are the 
predictors, and k is a constant. These terms are 
obtained using the following equations: 

f i  —  CAI  "  CBI 

J 2   =   CA2   "   CB2 

k =  CBO " CAO . 

This is simply a subtraction of the coefficients in the 
PROC DISCRIM output. Note that the subtraction 
to compute k is in the reverse order of the other two 
subtractions. For our fog forecast model, the Fisher 
discriminant function is given by: 

(-0.20841-DDEP)-(0.0060« WDIR) =-2.36155. 

The equation of this line is plotted in Figure 26-2. 

Wind Direction 
360 

NO FOG 

0 2 4 6 8 

Dew Point Depression 

Figure 26-2. Fog forecast model plot. 

Note: This graph also illustrates a difficulty in using wind direction as a predictor variable. It is usually better 
to use the sine or cosine of the wind direction. 
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Chapter 27 

STEPWISE DISCRIMINANT ANALYSIS 

27.1 Introduction. Discriminant analysis is a 
multivariate statistical technique that can be used to 
develop a mathematical model to estimate event 
probabilities. Many times it is not known which or 
how many predictor variables to use in discriminant 
analysis (SAS DISCRIM procedure). Consequently, 
analysts collect data on variables that are merely 
suspected as good discriminators. Stepwise 
discriminant analysis (SAS STEPDISC procedure) 
cannot generate a mathematical model, but it is a tool 
that will enable the analyst to eliminate redundant and 
unnecessary predictors for the SAS DISCRIM 
procedure. This will ensure a more efficient model, 
using the optimum number of predictors. 

27.2 Background. 

a. Stepwise variable selection procedure is used to 
select the most useful discriminating variables for 
group separation in the SAS DISCRIM procedure. 
This permits the analyst to identify independent 
predictor variables which contribute the most to the 
separation of the data. Variables that contribute little, 
or are redundant, can then be excluded. There are 
three types of stepwise discriminant analysis used by 
the SAS STEPDISC procedure: forward selection, 
backward selection, and stepwise selection. 

(1) The forward selection method begins with no 
variables in the model. With each step, the most 
discriminatory variables are added one by one. Once 
a variable has been selected, it stays in the model 
permanently. 

(2) Backward selection is essentially the opposite of 
forward selection. Initially, all variables are considered 
and with each step the most unnecessary or least 
discriminatory variable is eliminated one-by-one. 
Once a variable has been removed, it is deleted 
permanently. 

(3) Stepwise selection is similar to forward selection, 
except with each step a variable may be added or 
deleted. The iteration continues until the procedure 

identifies the optimum collection of variables. This 
method is the SAS STEPDISC procedure default. 

b. Forward selection is generally the easiest of the 
three to understand. Its use for meteorological 
applications is reported in the literature. Forward 
selection ensures that variables entered are not 
subsequently removed; this may be desirable in some 
applications. However, forward selection does not 
ensure that the first two variables selected are 
necessarily the best pair. 

c. Thompson and Zucchini (1990) point out that 
simply increasing the number of predictor variables 
in a model does not necessarily improve the accuracy 
of the model forecasts. In fact, excessive complexity 
usually decreases the value of a particular model. 
Miller (1962) used forward discriminant analysis in 
early forecast model to analyze 175 possible predictor 
variables. His technique identified that only 16 of 
these variables were necessary to predict precipitation 
conditions at Hartford, Conn., over an interval from 
zero to 6 hours in advance. 

27.3 The SAS STEPDISC Procedure. 

a. Evaluation of potential predictors. To determine 
which variables should be added or deleted from the 
set of predictors, SAS uses statistical measures such 
as the squared partial correlation, Wilks' lambda, and 
a tolerance test. The first two measures are converted 
to an F-statistic and a probability level. Variables are 
entered or deleted depending on the size of the F- 
value and respective probability levels. 

b. Forward, Backward, or Stepwise? Afifi and Clark 
(1984) state that unless the analyst is familiar with 
the complexities of a given option, the stepwise option 
should be selected. Another important decision the 
analyst must consider is what value to use for the 
acceptance/rejection threshold. Afifi and Clark 
recommend as a threshold the particular F-value that 
corresponds to a probability value of 0.15. This is the 
SAS default. However, other researchers have used 
different values. 
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c. The output from the STEPDISC procedure provides 
the information needed to determine which variables 
should be included in the DISCRIM procedure. The 
easiest and most direct way to evaluate the variables 
is to look at the average squared canonical correlation 
(ASCC). The ASCC, which ranges from zero to one, 
indicates the percentage of the variance which is 
explained by the predictor variables. An ASCC of 1 
indicates that all groups (e.g. fog and no fog) are 
perfectly separated with the variables considered. An 
ASCC of 0 indicates that the groups are not separated, 
i.e., it is not possible to discriminate between the 
groups using the input variables. The output of the 
STEPDISC procedure will list the variables in order 
from the most discriminatory to the least. At some 
point, the ASCC values stabilize, which is the cue 
that additional variables are adding very little, if any, 
additional skill to the model. All variables up to this 
point should then be selected for the DISCRIM 
procedure. 

27.4 Example. 
a. Shown below is an example of how to perform 
stepwise discriminant analysis using SAS. The 
example develops a discriminant analysis model to 
forecast fog with a visibility of less than or equal to 
5,000 meters (yes/no) 3 hours from the observation 
time. Potential predictors from the current observation 
include: temperature (TEMP), dew point (DEW), dew 
point depression (DDEP), wind direction (WDIR), 
cosine and sine of the wind direction (CWD and 
SWD), wind speed (WSP), cosine and sine of the hour 
angle (CHH and SHH), altimeter setting (ALT), sea 
level pressure (SLP), ceiling height (CIG), and 
visibility (VSBY). The class variable VSBY3 is set 
equal to 0 when fog (visibility less than or equal to 
5000 m) occurs 3 hours from the observation point, 
otherwise it has a value of 1. (The variables YY, MM, 
DD, HH are the year, month, day, and hour of the 
observation; we did not include these as potential 
predictors.) The SAS code is as follows: 

DATA ONE; 
INFILE DATAIN MISSOVER; 
INPUT YY MM DD HH CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR 
CIG SLP ALT VSBY VSBY3; 
PROC STEPDISC; 
CLASS VSBY3; 
VAR CHH SHH CWD SWD TEMP DDEP WSP DEW WDIR CIG SLP ALT VSBY; 
RUN; 
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b. A summary of the output from this procedure is shown below. 

Stepwise Discriminant Analysis 

Variable Average 
DEW Squared 

Step Entered Partial F Prob>0 Canonical 
R**2 Statistic F Correlation 

1 VSBY 0.4242 31886.274 0.0001 0.42417035 

2 DDEP 0.0420 1896.459 0.0001 0.44833985 

3 SLP 0.0222 988.032 0.0001 0.46059021 
4 SWD 0.0124 544.656 0.0001 0.46729342 

5 TEMP 0.0095 414.288 0.0001 0.47234394 
6 CIG 0.0036 154.549 0.0001 0.47422135 
7 WDIR 0.0024 105.395 0.0001 0.47549859 
8 CHH 0.0011 47.885 0.0001 0.47607826 
9 WSP 0.0006 26.393 0.0001 0.47639757 
10 CWD 0.0005 19.808 0.0001 0.47663711 
11 ALT 0.0004 16.417 0.0001 0.47683557 
12 SHH 0.0001 3.787 0.0517 0.47688135 

c. In the upper part of the table, the variables that 
failed the tolerance test are depicted. In this example 
only one variable, the dew point, failed this test. The 
other 12 variables are listed in the lower part of the 
table. The most discriminatory variable is the 
visibility. The average squared canonical correlation 
(ASCC) of this variable alone is 0.4242. The addition 
of the variables dew point depression, sea level 
pressure, the sine of the wind direction, and 
temperature, increase the ASCC to 0.4723. At this 
step, the ASCC value stabilizes. The addition of the 
fifth variable (TEMP) increases the ASCC by about 
0.5 percent. The addition of the sixth variable (CIG) 
increases the ASCC by only 0.2 percent. In fact, the 

ASCC with all twelve variables is only 0.4769, an 
increase of only 0.5 percent from just using five 
variables. Thus, this analysis suggests that using only 
the first five predictors will discriminate between fog 
and no fog. 

27.5 Conclusion. Stepwise discriminant analysis is 
a technique for identifying which variables are best 
used as predictors in developing a forecast model. It 
can eliminate redundant and unnecessary variables. 
The average squared canonical correlation is a useful 
tool for analyzing the marginal improvement to a 
model each additional variable provides. 

81 



82 



CONSOLIDATED STATISTICAL BACKGROUND PAPERS 

Chapter 28 

A COMPARISON OF DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION 

28.1 Introduction. This chapter describes some of 
the similarities and differences between logistic 
regression and discriminant analysis (described in a 
previous paper). Both of these techniques are useful 
for analyzing binary response data (yes/no 
occurrences). The idea for this paper came from an 
article presented at the 12th Conference on Probability 
and Statistics in Atmospheric Sciences (1992), in 
which logistic regression and discriminant analysis 
techniques are compared for forecasting thunderstorm 
occurrences. 

28.2 Discussion. 

a. Discriminant Analysis. In linear discriminant 
analysis, the SAS DISCRIM procedure generates 
linear discriminant functions for each class of the 
response variable (such as "thunderstorms" vs. "no 
thunderstorms"). 

TSTM  =   biVar, + b2Var2  + ...+ bnVarn  - b0 

NoTSTM  =   biVar, + b2Var2  + ...+ bnVarn  - b0 

where the coefficients of the predictor variables are 
denoted by bj, b2, bn, and bo denotes a constant. The 
probability of No TSTMS is 

exp(No TSTM - TSTM) + 1 

b. Logistic regression. As mentioned previously, 
logistic regression is an alternative to discriminant 
analysis. Logistic regression provides a means of 
fitting an S-shaped curve to data in which the 
dependent variable is binary (TSTM / No TSTM). 

For the logistic regression model the probability of 
No TSTMS can be expressed as follows: 

1 

1 + exp[-(bo + biVari + b2Var2 + + b„Var„)] 

In both cases the probability of TSTM equals one 
minus the probability of No TSTM. 

c. Differences between discriminant analysis and 
Logistic regression. During a workshop referenced 
at the statistics conference, there was found to be little 
difference between the results obtained when 
analyzing the TSTM data with discriminant analysis 
and logistic regression. Even though there may be 
little practical difference between the two techniques, 
there are some differences in the underlying 
assumptions of each. One of the primary assumptions 
of discriminant analysis is normality. If the data being 
analyzed is assumed to be normal, then it is preferable 
to use discriminant analysis instead of logistic 
regression. In most applications of discriminant 
analysis at least one variable is qualitative or 
dichotomous (0 or 1). The assumption of multivariate 
normality will rarely be satisfied if dichotomous 
predictor variables are present. Application of the 
discriminant function when the assumption of 
normality does not hold may result in bias. Logistic 
regression, on the other hand, is applicable for any 
combination of discrete or continuous variables. 

28.3 Sample Calculations. The following examples 
demonstrate how to use discriminant analysis and 
logistic regression within SAS. Some definitions of 
the SAS options that highlight the differences between 
the two techniques are also provided. 
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a. The SAS code used to run discriminant analysis and logistic regression for the "Eglin Thunderstorm" project 
(Cornell, 1993) is shown below: 

* ENTER TSTM DATA 
* 

* VARIABLES: 
* CCL - CONVECTIVE CONDENSATION LEVEL 
* PLCL - PRESSURE AT THE LCL 
* PLFC - PRESSURE AT THE LFC 
* DPD - DEWPOINT DEPRESSION 
* SW - SHOWALTER INDEX 
* TIME - 1= NO TSTM, 0=TSTM 

DATA ONE; 
INPUT CCL PLCL PLFC DPD SW TIME; 
CARDS; 
49   990  986  26   10   1 
40   957  618  25   2    1 
151  862  100  17   14   1 
...(ETC) 
RUN; 

* 

* DISCRIMINANT ANALYSIS 

DATA TWO; 
SET ONE; 
PROC DISCRIM POOL=YES LIST OUT=PRED; 
CLASS TIME; 
VAR CCL PLCL PLFC DPD SW; 
RUN; 
* 
* LOGISTIC REGRESSION 
*• 
DATA THREE; 
SET ONE; 
PROC LOGISTIC; 
MODEL TIME = CCL PLCL PLFC DPD SW / CTABLE; 
OUTPUT OUT = PRED P=PHAT LOWER=LCL UPPER=UCL; 
RUN; 
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b. Output from the logistic regression procedure: 

LOGISTIC EQUATION PARAMETER ESTIMATE 
Intercept -7.930 
CCL -0.007 
PLCL 0.009 
PLFC 0.001 
DPD -0.020 
SW -0.207 

CRITERIA FOR ASSESSING MODEL FIT 
SCORE -178.697 (p=0.0001) 

PROBABILITY TABLE 

OBS CCL PLCL PLFC DPD SW TIME LEVEL PHAT LCL UCL 

1 49 990 986 26 10 1 0 0.401 0.253 0.57 

2 40 957 618 25 2 1 0 0.654 0.593 0.711 

CLASSIFICATION TABLE 

CORRECT INCORRECT 
% 

CORRECT 
SENSITIVITY SPECIFICITY 

FALSE 
POS. 

FALSE 
NEC 

PROB 
LEVEL 

EVENT 
NON 

EVENT 
EVENT 

NON 
EVENT 

0.48 389 145 127 45 75.6 89.6 53.3 24.6 23.7 

0.5 383 148 124 51 72.2 88.2 54.4 24.5 25.6 

c. Output from the discriminant analysis procedure: 

LINEAR DISCRIMINANT FUNCTIONS 

THUNDERSTORM (0) 

Variable 

Constant -757.584 
CCL 0.999 
PLCL 1.493 
PLFC 0.022 
DPD -0.071 
SW 0.344 

NO THUNDERSTORM (V) 

-749.202 
1.000 
1.483 
0.020 
-0.049 
0.536 
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PROBABILITY OF SAS DISCRIM 

FROM CLASSIFIED 
TIME INTO TIME 0 1 

1 1 0.3996 0.6004 

1 0          * 0.5902 0.4098 

1 1 0.0283 0.8717 

where * denotes misclassified observation 
0 denotes thunderstorm 
1 denotes no thunderstorm 

CLASSIFICATION SUMMARY 

FORECAST 

OBSERVED 

TSTM NO TSTM TOTAL 

TSTM 354 80 434 

NO TSTM 107 165 272 

TOTAL 461 245 706 

d. Explanation of SAS code options. 

(1). In the SAS DISCRIM procedure, the option 
POOL=YES is used to compute the linear discriminant 
functions. The LIST option prints the classification 
results for each observation. The CLASS statement, 
which is required in the DISCRIM procedure, defines 
the groups, TSTM or NO TSTM, in the present 
example. 

(2). In the SAS LOGISTIC procedure, the CTABLE 
option prints the classification table for the final model 
(the CTABLE option is only available for binary 

response data). The PPROB option specifies the 
critical probability value in classifying observations 
for the CTABLE option. The PPROB must be between 
0 and 1. For the classification table, the response is 
predicted to be an event (yes) if the estimated 
probability value is greater than zero, or equal to the 
value stated by the PPROB option. Otherwise, the 
response is predicted to be a nonevent (no). PPROB 
is set to .05 by default. The PPROB option is ignored 
if the CTABLE option is not specified. 
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e. Explanation of the SAS code output. 

(1) DISCRIM Procedure. 

The Fisher Discriminant Function (Z) parameters are obtained by subtracting the values of the coefficients and 
constants of the linear discriminant functions for the TSTM case from those for the NO TSTM case. In our 
example this is 

Z = 0192(SW) + 0.022(DPD)-0.002(PLFC)-0.010(PLCL) + 0.001(CCL) + 8.382 . 

The probability of NO TSTM is 
1 

l + exp(Z) 

and the probability of TSTM is one minus the probability of NO TSTM. 

(2) LOGISTIC Procedure. 

For logistic regression, the probability of NO TSTM is 

7+exp{-[-7.930 - 0.007{CCL) + 0.009(PLCL) + O.OOl(PLFC) - 0.020(OPD) - 0.207(SW)]}. 

Again, the probability of TSTM is one minus the probability of NO TSTM. 

For logistic regression, the SCORE statistic under 
"Criteria For Assessing Model Fit" provides a test of 
the joint significance of the predictor variables. Since 
the probability value is very low (p < 0.05), the 
predictors are deemed to be useful in the model. 

In the logistic regression output, "Time" can either be 
0 or 1. For observation 1, PHAT=0.401 means that 
the probability that Time=0 (TSTM) is 0.401. UCL 
and LCL are the upper and lower confidence limits 
for the probability PHAT. The _LEVEL_ (a SAS 
variable) will always be zero if the Time variable has 
two possibilities (0 or 1). 
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28.4  Evaluation of Results.   The following measures provide a method to compare the results of the two 

techniques. 

a. Discriminant Analysis. 

OBSERVED 

FORECAST 

YES NO SUM 

YES 354 80 434 

NO 107 165 272 

SUM 461 245 706 

FY = Forecast Yes;    FN = Forecast No;    OY = Observed Yes;   ON = Observed No 

Percent Correct = (FYOY + FNON) / (Sum OY + Sum ON) = 73.51 percent 

False Positive = (FYON) / (SUM FY) = 0.2321 

False Negative = (FNOY) / (Sum FN) = 0.3265 

Sensitivity = (FYOY) / (Sum OY) = 0.8157 

Specificity = (FNON) / (Sum ON) = 0.6066 

Critical Success Index = (FYOY) / (FYOY + FNOY + FYON) = 0.6543 

True Skill Score = (FYOY / Sum OY) - (FYON / Sum ON) = 0.426 

b. Logistic Regression. 

OBSERVED 

FORECAST 

YES NO SUM 

YES 383 51 434 

NO 124 148 272 

SUM 507 199 706 

FY = Forecast Yes;    FN = Forecast No;    OY = Observed Yes;   ON = Observed No 

Percent Correct = (FYOY + FNON) / (Sum OY + Sum ON) = 75.21 percent 

False Positive = (FYON) / (SUM FY) = 0.2446 

False Negative = (FNOY) / (Sum FN) = 0.2563 

Sensitivity = (FYOY) / (Sum OY) = 0.8825 

Specificity = (FNON) / (Sum ON) = 0.5441 

Critical Success Index = (FYOY) / (FYOY + FNOY + FYON) = 0.6864 

True Skill Score = (FYOY / Sum OY) - (FYON / Sum ON) = 0.4264 
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c. The false positive rate is the proportion of predicted 
"yes" events that were observed to be "no" events. 
The false negative rate is the proportion of predicted 
"no" events that were observed as "yes" events. The 
sensitivity is the proportion of observed "yes" events 
that were predicted "yes" events. The specificity is 
the proportion of observed "no" events that were 
predicted "no" events. The critical success index (CSI) 
takes into account both classes of error, failures to 
predict and false alarms. The CSI varies from 0 (total 
failure) to 1 (perfection). The true skill score (TSS) 
provides a measure of the ratio of the observed skill 
to perfect skill. TSS ranges from -1 to +1. 

d. Not all of the measures shown above are provided 
automatically by the SAS procedures, some were 
calculated by hand. The SAS DISCRIM procedure 

provides a classification table and error count 
estimates. The SAS LOGISTIC procedure provides 
percent correct, false positive, false negative, 
sensitivity, and specificity. 

28.5 Conclusion. There is not much difference 
between the results of the two techniques in this 
example, but there are a few differences in the output 
formats. The SAS LOGISTIC procedure provides 
more evaluation measures than the DISCRIM 
procedure, and it is slightly easier to formulate the 
probability equation with the LOGISTIC procedure. 
The probability table in the LOGISTIC procedure is 
more complicated than the one from DISCRIM, but 
it provides upper and lower confidence limits for the 
estimated probability. 

89 



90 



CONSOLIDATED STATISTICAL BACKGROUND PAPERS 

Chapter 29 

THE CENTRAL LIMIT THEOREM 

29.1 Introduction. The Central Limit Theorem is 
one of the more influential theorems in statistics. This 
chapter provides a definition of the Central Limit 
Theorem, and describes some viewpoints that have 
been collected from a literature survey. 

29.2 Discussion. 

a. Definition of the Central Limit Theorem. The mean 
of a population is generally estimated from a sample 
of observations. As the random sample size (n) is 
increased (i.e., n —»<»), the distribution of the sample 

means approaches a normal distribution regardless of 
the shape of the parent population. In the literature, 
the approximation is generally accepted as sufficient 
when the sample size is at least 30. Even if the data 
distribution is far from normal, the distribution of 
sample means tends toward a normal distribution as 
the sample size increases. This fact is probably the 
single most important reason for the widespread use 
of the normal distribution. 

b. Example. Table 29-1 shows mean January cloud- 
cover percentages. 

Table 29-1. Mean January cloud-cover percentages. 

YEAR % YEAR % YEAR % YEAR % 

1960 0.22 1968 0.12 1976 0.12 1984 0.11 

1961 0.18 1969 0.28 1977 0.36 1985 0.18 

1962 0.27 1970 0.06 1978 0.18 1986 0.12 

1963 0.31 1971 0.26 1979 0.23 1987 0.08 

1964 0.07 1972 0.33 1980 0.22 1988 0.18 

1965 0.11 1973 0.15 1981 0.06 1989 0.16 

1966 0.14 1974 0.2 1982 0.18 1990 0.28 

1967 0.28 1975 0.17 1983 0.29 1991 0.43 

Mean = 0.20 Standard Deviation = 0.09 
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Observations of cloud-cover generally follow a very 
non-normal distribution. However, since the sample 
size is greater than 30, we can invoke the Central Limit 
Theorem and assume that the distribution of mean 
cloud cover is normal. A confidence interval on the 
mean can be readily calculated. 

c. Bradley (1973) states that some of the earlier 
investigators of the Central Limit Theorem concluded 
that the distribution of the sample mean becomes 
normal even for very small sample values, regardless 
of the shape of the distribution. However, this is true 
only if the sample population is not appreciably 
skewed. The more skewed the population, the greater 
the sample size must be to invoke the Central Limit 
Theorem. 

d. Bradley (1973) warns that the Central Limit 
Theorem may be inappropriately invoked in some 
cases where the population data is greatly skewed. In 
extreme cases, it can be necessary to have sample sizes 
on the order of hundreds or even thousands before the 
Central Limit Theorem becomes valid. Kurtosis in 
the population distribution can also invalidate the 

Central Limit Theorem for small sample sizes. 
(Kurtosis is another measure of the shape of the 
distribution of values. Large values of kurtosis indicate 
the distribution has "heavy tails." ) 

e. The Central Limit Theorem can be used to answer 
the question, "Is the sample mean a good estimate of 
the population mean?" Suppose one computes the 
means of a group of samples, and constructs a 
frequency distribution of these means. The dispersion 
of the distribution of means is given by 

s 
Sx   =   -j= 

where $x is tne standard deviation of the distribution 
of sample means (also called the standard error), and 
s is the standard deviation of the original population 
from which a sample of size n is drawn. For the 
example above, the 95 percent confidence interval (at 
the 5 percent level of significance) is 

0.20 ±2.04 
0.09 = 0.20 ±0.03. 
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Chapter 30 

STATISTICAL INTERVALS 

30.1 Introduction. 

a. AFCCC (AWS), often provides customers with 
single values (such as mean temperatures, or ASPAM 
vertical profile parameters) to answer a request. 
However, some customers might be better served if 
AFCCC provided a degree of confidence in that single 
value, and a range of practical values. For example, 
suppose the threshold for requiring air conditioning 
at a base is a mean monthly temperature greater than 
80° F. The base engineers are notified by weather that 
the mean monthly temperature for a particular month 
is 78° F. Based on the 80° F threshold, the base 
engineers would not turn on the air conditioning for 
that month. However, if weather instead tells the 
customer that with 95 percent confidence the mean 
monthly temperature is 78 ± 2.5° F, the base engineers 
might make the decision to turn on the air 
conditioning. 

b. This chapter presents a general definition of a 
confidence interval, and gives some examples of the 
applications of confidence intervals. This chapter also 
describes how to calculate prediction intervals, 
tolerance intervals, error bars, and to predict future 
observations. One possible application of special 
importance is the construction of confidence intervals 
for vertical profiles produced by the Atmospheric Slant 
Path Analysis Model (ASPAM). 

30.2 Background. 

a. A population is the totality of elements under study 
(i.e., all observations), whereas a sample includes 
only a portion of the population. Parameters describe 
the properties of populations, while statistics describe 
samples. Generally, we use random sample statistics 
to infer characteristics about a population. Examples 
of parameters include the population mean, (X, and 
the population standard deviation, a. Statistics include 
the sample mean, x, and the sample standard 
deviation, s. 

b. A confidence interval (abbreviated C.I.) for a 
population parameter gives an interval estimate for 
the parameter. The estimate places upper and lower 
bounds (i.e., confidence limits) around a point estimate 
for the parameter. Sample size (n) and population 
variability (s) affect the precision of the estimate 
(Schlotzhauer and Littel, 1987). 

c. The confidence level is the probability that an 
assertion about the value of a population parameter is 
correct. That is, it indicates your degree of belief that 
the interval contains the true population parameter. 

d. A normal distribution is one of many theoretical 
distributions for a population. Many statistical 
methods assume the values in a data set are a sample 
from a normal distribution. The normal distribution 
is completely defined by its mean \i and standard 
deviation a. However, in most real-life applications, 
a is unknown so the sample standard deviation s is 
used. Once you replace s with the sample standard 
deviation s, using the normal distribution is not exactly 
correct. A t-distribution should be used instead. A t- 
distribution is very similar to the normal distribution 
and allows you to adjust for different sample sizes. 
The t-value is based both on the sample size and on 
the level of confidence you choose. If the sample 
values are not normally distributed, the t-values can 
be adjusted to allow for departure from normality 
(Schlotzhauer and Littel, 1987). 

30.3 Discussion of Various Statistical Intervals. 

a. Confidence Intervals. 

(1) The purpose of confidence intervals is to determine 
a range of values to estimate an unknown population 
parameter, such as a population mean. For example, 
if we compute a mean and standard deviation s from 
a large sample, a confidence interval of the population 
mean (with a 95 percent level of confidence) is given 
by: 

s s 
X ~t0.025—j=   <   /J.   <   X   +   to.025~l= (1\ 
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where |J. is the population mean. The value of the 
confidence interval is based on the sample size and 
the level of confidence you choose. 

Interpretation: There is a 95 percent probability that 
the population mean falls within this confidence 
interval. Specifically, if you collect a great many 
samples and calculate a 95 percent C.I. about \i for 
each sample, 95 percent of the confidence intervals 
would contain the true population mean \i, and 5 
percent would not. Unfortunately, with only one 
sample, you don't know whether the C.I. you 
calculated is one of the 95 percent or one of the 5 
percent (Schlotzhauer and Littel, 1987). 

(2) Confidence intervals can be applied to: 

- Means 
- Difference between two means 
- Ratio of two means 
- Correlation coefficients 
- Medians 
- Difference between two medians 
- Ranges 
- Regression coefficients 
- Standard deviations 
- Rare events 
- Individual observations 

b. Prediction intervals. 

(1) Prediction intervals can also be used to predict a 
future individual observation from a population. If 
the sample mean and variance are known in a sample 
of size n, then the interval for the prediction of a 
random observation, designated xn+1 is 

(2) 

X  -   ta/2,jS2\ — \   £    Xn+1    £  X  +   tanks' 
n + 1 

n 

where: 
t   = t-value at the (1 - a) level of confidence 

with n -1 degrees of freedom 
n = sample size 
x  = sample mean 
s2 = sample variance 

(2) The regression equation relating x and y can be 
used to predict a value of y for a given value of x. 
Prediction intervals can be used to indicate a likely 
range of the predicted values of y. 

(3) For an individual y value, the interval is called 
the prediction interval. 

(4) The prediction interval for an individual value y. 
for a given value x. is 

, 1 (xt  - x) 
y{  ± (ta/2  Sy.x) 11 +   -   +  —- 

n   !(*,-*)' 
(3) 

i=i 

where: 
y. = predicted value from the regression 

equation 
t   = t-value at (1 - a) level of confidence 

y = sample mean of y-values 

x  = sample mean of x-values 
x. = individual x-values 

and 

n — 2 
2>-50a 

i=l X(*,-*)2 

i=l 

(4) 

c. Error bars. 

(1) According to Panofsky and Brier (1968), an error 

bar (e ) is defined by: 

£lF, - 0 
e = 

;=i 
(5) 

n 

where: 
F. = is the forecast value 

1 

O. = is the observed value 
1 

n = the number of observations. 

(2) An error bar requires knowledge of the forecasted 
values. 
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d. Wilks distribution-free tolerance limits . 

(1) Tolerance limits specify the limits within which a 
certain portion of the population can be expected to 
occur (with a preassigned probability or level of 
confidence). In other words, suppose we wish to 
determine the interval in which a certain percentage, 
Y, of the population values occurs with confidence 1 
- a and provides us with the required random sample 
size, n. The random sample maximum and minimum 
values x     and x . are the tolerance limits, and we 

max min 

can conclude (with a confidence level of 1 - a) that g 
percentage of the population occurs within this range. 
The Wilks equation for tolerance limits is 

nj n-l (n - 1)Y" = a (6) 

(2) Suppose we wish to determine an interval in which 
90 percent of the observations occur within the 
population with a confidence level of 95 percent (the 
confidence level is 1 - a, so a = 0.05). Equation (6) 
can be solved by trial and error. A value of n = 46 
results in 

(46)(0.9f - (45)(0.9)46 = 0.40 - 0.35 = 0.05. (7) 

Thus, 90 percent of the observations in a given 
population lie in the interval determined by the largest 
and smallest value of a random sample of 46 
observations drawn from the population, with a 
confidence level of 95 percent. 

e. ASPAM atmospheric profiles. 

(1) In the analysis of meteorological data valid at a 
point in time, analysts generally have only one 
observational value for the data point in question. For 
example, a particular ASPAM-derived profile has only 
one observation for each meteorological parameter at 
each atmospheric level. The types of confidence 
intervals described above apply only when several 
samples are available. Specifying confidence limits 
with only one observation value, requires making 
several assumptions, such as the nature of the variance, 
standard deviation, and mean of the true population. 
The method selected also depends upon the question 
being answered. 

(2) The purpose of the first example is to determine a 
range of values in which the true temperature lies, 
given the one measurement. In other words, does the 
Optimum Interpolation Vertical Profile (OIVP) (or 
RAOB Vertical Profile) temperatures make sense based 
on the sampling method used. 

(a) First, the analyst must obtain estimates of the 
observational error. This error can result from a variety 
of sources. Some possible sources of error include 
statistical (or sampling) error, instrument error, and 
interpolation error. For ASPAM, since there is one 
observation in each sample (i.e., one vertical profile), 
these errors are not calculated from the sample, but 
are empirically (i.e., experimentally) derived. So, the 
analyst must first assume and trust these empirical 
mean, variance, and standard deviation values are the 
true population parameters. If one also assumes these 
error sources are independent of each other, the total 
error, sT

2, is given by (Bevington and Robinson, 1992): 

ST   =   S2i   +   sl   +   S3   + (8) 

where Sj2, s2
2, s3

2,... are the variances of the individual 
sources of error. 

(b) Assume the temperature at a given point is 
estimated to be 61° F. Estimates of the standard 
deviation of the error components are: instrument 
1.3° F, interpolation 2.7° F, and statistical 0.5° F. 
(Recall, the standard deviation is the square root of 
the variance.). If one assumes that the errors are 
normally distributed about the true value, then 68 
percent of the time, the actual temperature will lie 
within 1 standard deviation of the observed value. The 
standard deviation from all sources is then 

sT = y](1.3f + (2.5f + (0.5f (9) 

= 2.9 
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(c) If we assume that the observed value of 61° F is 
the best estimate of the true temperature, then the range 
of values in which the true temperature lies is 

61 ± 2(2.9) = 55.2 to 66.8. (10) 

In this example, there is a 95 percent probability that 
the true temperature lies within a range of 55.2° F 
through 66.8° F. In other words, 5 percent of the time 
the actual temperature will lie outside of this interval. 

(d) The difficulty in using this method lies in 
attempting to obtain reasonable, trustworthy estimates 
of the variances of the various components of error. 
These errors are dependent upon the characteristics 
of many independent, randomly-drawn samples, and 
are generally functions of location, altitude, and sensor 
type. The interpolation error, for example, is 
dependent upon the number of nearby reporting 
stations, the terrain, etc. However, since there is only 
one sample of one observation for each ASPAM 
vertical profile, one must use some experimentally 
predetermined errors. 

3) As a second example, suppose an analyst wishes 
to determine if the temperature measurement is 
consistent with climatology. Suppose, for the same 
month and hour, there are 18 previous measurements 
of temperature. These measurements are all 
independent of each other. The mean value of these 
samples is 48° F, and the standard deviation is 7° F 
(T = 48.0° F, s = 7.0° F, n = 18). The current 
temperature measurement is 61° F and the analyst 
wants to determine if the value is statistically 
consistent with the past samples. Our null hypothesis 
for this test is 

H : The current observation is drawn from a 
population with the same mean and standard 
deviation as the sample mean and standard 
deviation. 

To evaluate this hypothesis we use equation 2. If we 
assume a 95 percent prediction interval, 17 degrees 
of freedom (n -1), and a t-value of 2.11, then equation 
2 can be written as equation 11. 

48 - (2.11)](7.0)2l~ < xn+i <48 + (2.11)^(Z0)2 

48 - 15.2 < xn+i  < 48 + 15.2 

32.8 < Xn+i < 63.2 

19 

18 

(11) 
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Since the single random observation of 61° F falls 
within the 95 percent prediction interval of 63.2 and 
32.8, we accept the null hypothesis. 

30.4 Conclusion. Statistical intervals have numerous 
definitions depending on the application. That is, the 
term "statistical interval" can take on a wide range of 

meanings depending on context. To avoid confusion 
in the analysis of data, the user should not arbitrarily 
select one type of interval. It is better to analyze 
problems in terms of what specific information is 
desired, or what hypothesis is to be tested. The 
appropriate statistical test is then selected to provide 
this information, or to test the hypothesis. 
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Chapter 31 

CONFIDENCE INTERVALS FOR POPULATION MEANS 

31.1 Introduction. A number of SAS procedures in 
the SAS/STAT user's guide provide confidence 
intervals for different sample statistics. This chapter 
focuses on using confidence intervals to analyze 
estimates of population means. 

31.2 Discussion. 

a. The mean is often used as a measure of the central 
value of a sample, while the standard deviation is used 
to describe the scatter about the mean. The equations 
for calculating the mean and standard deviation are 

1  " x =  -£*, 

s = i-Sif* -xf 

where x. represents the individual observations, and n 
is the sample size. 

b. The standard error is a standard deviation of a 
distribution of random sample means. If repeated 
samples of size n are drawn from a population, the 
central limit theorem states that the distribution of 
sample means approaches a normal distribution, even 
though the population is not necessarily normally 
distributed. The distribution of the series of sample 
means has population mean u. and a standard deviation 
(or standard error of the mean) given by 

Standard Error = 

The standard error measures the spread of a series of 
random sample means, and can therefore be used to 
make inferences about the likelihood that the 
population mean lies within a specified interval. In 
other words, confidence limits can be calculated by 
using the standard error. Three formulas for 
calculating upper- and lower-confidence intervals are 
shown below. A 95 percent confidence limit is used 
for all these examples. 

(1). For sufficiently large samples (sample size greater 
than 30) the normal approximation can be used: 

x -2 
Vn, 

</*< x + 2 
4n, 

This indicates the population mean lies within ±2 
standard errors of the sample mean. 

(2).   For small sample sizes (less than 30), the t- 
distribution can be used as follows: 

t.os Vn 
ß   <   \X   +    t.05 

■Jn 

where t is the value of the (two-sided) t-distribution 
with n-1 degrees of freedom (this value can be 
determined from a t table in any statistics book). 

(3). If the sample size is small and there are doubts as 
to whether or not the population is normally 
distributed, the Chebyshev formula can be used to 
estimate the 95 percent confidence intervals: 

x 
4.5s 

4n P± x + 
4.5s 

4n 

The Chebyshev formula states that the true population 
mean will always lie within ±4.5 standard errors of 
the sample mean (with a 95 percent confidence level). 

31.3 Example. Suppose an analyst wishes to estimate 
the true me an monthly temperature at a particular 
location. The random sample mean is calculated from 
the mean monthly temperatures measured for 36 
different years (n = 36). If this mean is 53.25, and the 
standard deviation is 17.70, then the standard error is 

17.70 
Standard Error =  —T=-  = 2.95. 

36 
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Assuming the population is normally distributed, the 
analyst can use the normal approximation to estimate 
the confidence interval of the true population mean 
monthly temperature as follows: 

analysts are not sure that the population is normally 
distributed (or if the actual distribution is unknown), 
they can use the Chebyshev formula to calculate the 
confidence interval as follows: 

53.25 - 2(2.95) < \i < 53.25 + 2(2.95) 53.25 - 4.5(2.95) < \l < 53.25 + 4.5(2.95) 

47.4 < \i <59.2. 

The equation shows, with 95 percent confidence, that 
the population mean lies between 47.4 and 59.2. If 

40.0 < ß < 66.5. 

In this case the confidence is wider. 
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Chapter 32 

FORECAST VERIFICATION MEASURES 

32.1 Introduction. Many techniques are used to 
evaluate categorical forecasts. This chapter defines 
and discusses several of the most commonly used 
methods. 

32.2 Discussion. 

a. The Mean Square Error. Accuracy is the primary 
criterion used for selecting a forecasting model. 
Accuracy is defined as the degree of correspondence 
between individual forecasts and observations. 
Perhaps the most widely used measure of accuracy is 
the mean square error (MSE), which is calculated by 
squaring the difference between predicted values and 
actual observations, then averaging the squared values. 
Mathematically, MSE is 

MSE = ~ Ett-eO2 

i=l (1) 

where f. is the predicted observation, e. is the actual 
observation, and n is the number of observations. The 
root mean square error (RMSE) is the square root of 
the MSE: 

RMSE = 4MSE. (2) 

b. The Brier Score. The Brier score is a measure of 
accuracy commonly used for probability forecasts. 
The Brier score is a mean square error method of 

measuring the accuracy of probability forecasts. The 
National Weather Service uses the Brier score as a 
yardstick to measure the accuracy of probability 
forecasts. The Brier score is 1/2 of the P-score as 
defined by Brier (1950) and Panofsky and Brier 
(1958): 

P = 1 tl(fy-ey)
2 

n  i=1 i=1 

(3) 

j=i i=i 

where for n occasions, an event can occur in only one 
of r possible classes. The notation f. represents the 
forecast probability. The notation e.. represents the 
actual occurrence, which can take only the values 0 
or 1, according to whether the event occurred or not. 
For perfect forecasting the P-score will have a value 
of zero, and for the worst possible forecasting it will 
have a value of two. The Brier score then has a range 
of zero to one. Sometimes in the literature the Brier 
score is referred to as the Half-Brier score, but these 
terms are identical. The Brier score can be interpreted 
as the MSE of probability forecasts. 

(1). Below is an example of an evaluation of a set of 
10 probability forecasts for the occurrence of rain (the 
data is shown in Table 32-1, below). In the "RAIN" 
column, er = 1 when rain occurred, and e;j = 0 when 
rain did not occur. In the "NO RAIN" column, ey = 0 
when rain occurred, and e.. = 1 when no rain occurred. 

Table 32-1. Data used in example evaluation of probability forecasts. 

Probability Probability 
RAIN NORAIN 

Occasion Forecast (Fr) Observed (E.) Forecast (F..) Observed (E.) 

1 0.7 0 0.3 1 
2 0.9 1 0.1 0 
3 0.8 1 0.2 0 
4 0.4 1 0.6 0 
5 0.2 0 0.8 
6 0.0 0 1.0 
7 0.0 0 1.0 
8 0.0 0 1.0 
9 0.0 0 1.0 
10 0.1 0 0.9 
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(4) 

The P-score is then given by: 

P = (l/10)/Y0.7-0.0/ + (0.9-1.0/ + (0.8-1.0/ + (0.4-1.0/ 

+ (0.2-0.0/ + (0.0-0.0/ + (0.0-0.0/ + (0.0-0.0/ 

+ (0.0-0.0/ + (0.1-0.0/ + (0.3-1.0/ + (0.1-0.0/ 

+ (0.2-0.0/ + (0.6-0.0/ + (0.8-1.0/ + (1.0-1.0/ 

+ (1.0-1.0/ + (1.0-1.0/ + (1.0-1.0/ + (0.9-1.0/7. 

The P-score in this example is 0.19, so the Brier score is 0.095 (half the P-score). This is a very low value, which 
indicates a high level of accuracy. 

P = (0.1J(0.49 + 0.01 + 0.04 + 0.36 + 0.04 

+ 0.00 + 0.00 + 0.00 + 0.00 + 0.01 

+ 0.49 + 0.01 + 0.04 + 0.36 + 0.04 

+ 0.00 + 0.00 + 0.00 + 0.00 + 0.01). 

(5) 

(2). The Brier score is not an ideal statistic for the 
evaluation of forecasts of rare events. In this case, a 
low value of the Brier score can be misleading. One 
can obtain a very good Brier score even when a rare 
event was never correctly forecast. To overcome this 
limitation, the Brier skill score can be used (Murphy 
and Winkler, 1982). The Brier skill score (BSS) 
evaluates the accuracy of a probability forecast in 
relation to a reference forecast, such as persistence or 
climatology. Mathematically, it is defined as 

BSS =    1 
Brier Score 

Brier Score of Reference Standard 
x 100%. 

(3). If the reference forecast is climatology, then the 
Brier skill score measures how well a given set of 
forecasts improves over using climatology alone. 

Perfect forecasts earn a Brier skill score of 100 percent. 
Forecasts which are only as skillful as climatology 
receive a score of 0 percent, while forecasts that are 
inferior to climatology receive a negative skill score. 

c. The Heidke Skill Score. The common skill score 
proposed by Heidke is defined as 

S = 
R - E 

T - E 
(6) 

where S is the Heidke skill score, R is the number of 
correct forecasts, T is the total number of forecasts, 
and E is the number of forecasts expected to be correct 
based on chance, climatology, or persistence. When 
calculating the Heidke skill score, a contingency table 
is normally set up as shown in Table 32-2. 

Table 32-2. Contingency table showing the notation used to compute Heidke skill scores. 

Observed Forecast 
OCCURRENCE NON-OCCURRENCE TOTAL 

OCCURRENCE a b x=a+b 
NON-OCCURRENCE c d y=c+d 
TOTAL m=a+c n=b+d T=a+b+c+d 
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Using the notation in the table, the Heidke skill score against chance (HSS) is given by: 

(mx + njN 

(a + d) - 

HSS = V      T (7) 
mx + ny 

(1). To illustrate how the HSS is calculated, consider the following example, which uses the data shown in Table 
32-3. 

Table 32-3. Contingency table with data used to compute Heidke skill score example. 

Observed                                                  Forecast 
OCCURRENCE NON-OCCURRENCE TOTAL 

OCCURRENCE 87 23 110 
NON-OCCURRENCE 29 306 335 
TOTAL 116 329 445 

The following equation shows the Heidke skill score for this case: 

HSS = 

(87 + 306) - 
"(116x110) + (329x335)" 

445 

445 - 
"(116x110) + (329x335/ 

445 

= 0.69. (8) 

(2). The Heidke skill score against chance has a value 
of one when all forecasts are correct, and a value of 
zero when the actual number of correct forecasts equals 
the number of correct forecasts that would occur by 
chance. It is possible to obtain a negative HSS when 
the forecasting method has no skill - it performs worse 
than random guessing. The Heidke skill score may 
be used to compare different forecast techniques. The 
technique having the largest HSS is determined to be 
the most useful. 

(3). The Heidke skill score is not restricted to just 
two categories. For the case of R categories, the HSS 
is computed using the equation shown below: 

where x.. is the number of observations with a forecast 
ij 

category i and observed category j. The subscript T 
refers to the totals column (x.T is the total number of 
observations with forecast category i; x^ is the total 
number of observations). 

(4). Appleman (1960) felt the Heidke skill score was 
not measuring forecasts against a true standard. The 
standard used by the Heidke skill score, the expected 
number of correct forecasts based on pure chance, is 
given by the equation shown below (from equation 
2). 

(mx + ny) 
E = (10) 

HSS = ^L— 

V7T 
X TT 

(  Ä s 
Vi=i 

xTixiT 

(9) Appleman noted that this value is dependent upon the 
number of forecasts issued for each category. He 
maintains that the standard should be independent of 
the forecasts being evaluated. To overcome this 
problem, he proposed a new score. Appleman's score 
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uses the same equation as the HSS (equation 1), but 
the value of E in the table is replaced with the number 
of observations in the category that is observed most 
frequently. That is 

E = MAX(x,y). (ID 

In the above example, E is be 335, resulting in an 
Appleman score of 0.52 (compared to 0.69 for the 
HSS). 

(5). Murphy and Katz (1985) reviewed a number of 
skill scores that propose to measure the accuracy of 
categorical forecasts. They identified the following 
scores as being the best for measuring skill: Kuiper's 
performance index, Gringorten's skill score, Heidke 
skill score, Pierce's success index, and the Appleman 
score. 

d. Secondary verification scores. The Heidke skill 
score is the most widely used of all the skill indices. 
Its greatest weakness is in the evaluation of forecasts 
dealing with rare events. Often, a large HSS can be 
obtained simply by never forecasting the rare event. 
The Appleman score also suffers from this deficiency. 
To supplement these skill scores, Goldsmith (1989) 
recommended the use of three secondary verification 

scores. The proposed secondary scores are the 
probability of detection (POD), the false alarm ratio 
(FAR), and the critical success index (CSI), which 
are described below. 

(1). The probability of detection is simply the number 
of correct forecasts (x) of a given event divided by the 
total number of cases observed (To) 

x 
POD = 

To 
(12) 

(2). The false alarm ratio is the number of times the 
event was incorrectly forecasted to occur divided by 
the total number of the event forecasts (Tf) 

(Tf - x) 
FAR =  ^1—-L. (13) 

if 

(3). The critical success index is given by 
x 

CSI = 
x + (Tf - x) + (To - x) 

(14) 

32.3 Example. Suppose we want to measure the 
skill of a technique for forecasting precipitation type. 
Three categories of precipitation are to be forecast: 
freezing precipitation (Z), frozen precipitation (S), or 
liquid precipitation (R). The contingency table 
showing the results of this test is given below. 

Table 32-4. Contingency table showing data for each precipitation category used in the examples. 

Observed Forecast 

Z S R TOTAL 

Z 445 766 464 1675 

s 445 18593 2420 21458 

R 312 1673 30418 32403 

TOTAL 1202 21032 33302 55536 
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The Heidke skill score against chance for this example 
is 0.782. This suggests a technique with considerable 
skill. To better understand the strengths and 
weaknesses of this forecasting method, the secondary 
verification scores are computed for each forecast 
category. 

Table 32-5. Forecast verification measures. 

Z S R 
POD 0.27 0.87 0.94 
FAR 0.63 0.12 0.09 
CSI 0.18 0.78 0.86 

These scores point out that the large HSS is 
misleading. The calculation is dominated by the large 
number of the liquid (R) and frozen (S) forecasts. 
Freezing precipitation has low probability of detection 

and a high false alarm rate. This results in a poor 
critical success index. Thus, despite the model's very 
high HSS, it displays poor performance in forecasting 
freezing precipitation (Z). 

32.4 Conclusion. Despite the large number of skill 
scores which have been proposed, no single score is 
clearly superior. It is perhaps unrealistic to expect 
one number to describe the many facets of forecast 
verification. The Heidke skill score against chance is 
the most widely used measure for categorical forecasts. 
However, it can provide misleading results, especially 
when evaluating forecasts of relatively rare events. 
Following Goldsmith (1989), we recommend 
supplementing the HSS with the probability of 
detection, false alarm ratio, and the critical success 
index. These secondary scores can identify situations 
when the HSS is subject to bias. 
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Chapter 33 

MODEL EVALUATION 

33.1 Introduction. Model evaluation involves the 
comparison of model predictions with observations. 
The root mean square error (RMSE) is often used at 
AFCCC as an accuracy measure. This chapter 
discusses the RMSE and related statistics. 

33.2 Discussion. 

a. The equation shown below is used to calculate the 
RMSE. 

1 
RMSE= J-XCPi-Oi)2 

(1) 
i=l 

where: o. and p; are individual elements of the observed 
and predicted distributions, and N is the total number 
of data pairs. The closer the RMSE is to zero, the 
better the fit between observed and predicted values. 

b. The mean absolute error (MAE) is calculated by 
the equation shown below. 

MAE = -TlPi  " oil (2) 

c. According to Willmot (1982), RMSE and MAE 
are among the best overall measures of model 
performance, but both have their limitations. 
Graphical data displays such as scatterplots, box plots, 
histograms, or displays of cumulative frequency 
distributions should always accompany the RMSE or 
MAE. These displays help identify patterns within 
the errors and extreme cases. The correlation 
coefficient is not recommended as a measure of 
accuracy, as it is often misleading (Panofsky, 1958). 

d. Segal and Pielke (1981) identified two conditions 
that must be satisfied for a model to demonstrate skill: 

(1) The standard deviation of the observed values 
must be similar to the standard deviation of the 
predicted values. 

(2) The RMSE divided by the standard deviation of 
the observed values must be less than one. 

e. Fox (1981) recommended using the following test 
statistic to evaluate model performance: 

(3) 
d 

r2 

±    t.05 
vno  n

P 

>.2+(nP- -*w 
a 

n0+np-2 

d± t. 
2s2 

.051 

where: d is the difference between the observed mean 

and the predicted mean; so
2 is the variance of the 

observed distribution; s 2 is the variance of the 
p 

predicted distribution; n is sample size and t05 is the 
value of the t-statistic for a 95-percent confidence level 
with (2n - 2) degrees of freedom. Test statistic assumes 
equal sample sizes and the population variances are 
the same. Equation 3 tests the null hypothesis that 
there is no statistical difference between the mean 
observed and the mean expected values. If zero lies 
within the confidence interval specified by equation 
3, than one accepts the null hypothesis. If zero lies 
outside this interval, the null hypothesis is rejected. 

f. Bias or mean error (ME) is simply the difference 
between the average forecast and average observation, 
and therefore expresses the bias of the forecasts. 

ME = -X(Pi-oi). (4) 

Forecasts that are on the average too high will exhibit 
ME>0, and forecasts that are on the average too low 
will exhibit ME<0. It is important to note that the 
bias gives no information about the typical magnitude 
of individual forecasts, and is therefore not an accuracy 
measure. 
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CHAPTER 33 

33.3 Example. The following example will help to 
illustrate the points raised above. 

a. Suppose one fits a set of temperature observations 
to a model, and wishes to test the closeness of fit. 
Table 33-1 shows the observed and predicted values. 
Table 33-2 shows the means and standard deviations. 

b. The root mean square error for this example is 

RMSE = 
36.11 

8 
= 2.12. (5) 

The standard deviation of observed (22.1) and modeled 
(21.9) distributions are similar. The RMSE divided by 
the standard deviation of observed values is 0.096. Since 
this is less than one, the model has demonstrated skill 
according to the criteria of Segal and Pielke (1981). 

c. Next, the analyst will use the statistic recommended 
by Fox (1981) as noted in equation 3: 

0.60+ 2.145 
(2) (484.01) 

(6) 

where s2 (484.01) = 

0.60 ±23.60. 

(7) (488.41)+(7) (479.61) 

8+8-2 

The upper limit of this interval is 24.20 and the lower 
limit is -23.00. Since zero lies within this interval, 
the analyst concludes the modeled distribution is a 
good fit to the observed data. 

Table 33-1. Observed and predicted temperature values. 

Temperature Observations Predicted Temperatures Differences 

12.4 11.9 0.5 

24.3 21.8 2.5 

35.2 37.9 -2.7 

41.1 40.6 0.5 

50.6 50.5 0.1 

64.2 60.3 3.9 

66.2 68.1 -1.9 

76.1 74.3 1.8 

Table 33-2.   Mean and standard deviation of 
observed and predicted temperature values. 

OBSERVED      PREDICTED 

MEAN 46.3 45.7 

STDDEV 22.1 21.9 
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